A Guideline for Object Detection Using Convolutional Neural Networks

التفاصيل البيبلوغرافية
العنوان: A Guideline for Object Detection Using Convolutional Neural Networks
المؤلفون: Xingguo Zhang, Kazuki Saruta, Yuki Terata, Guoyue Chen
المصدر: Lecture Notes in Electrical Engineering ISBN: 9789811501869
بيانات النشر: Springer Singapore, 2020.
سنة النشر: 2020
مصطلحات موضوعية: Landmark, Artificial neural network, Minimum bounding box, business.industry, Computer science, Process (computing), Computer vision, Artificial intelligence, Transfer of learning, Object (computer science), business, Convolutional neural network, Object detection
الوصف: The main purpose of object detection is to detect and locate specific targets from images. The traditional detection methods are usually complex and require prior knowledge of the detection target. In this paper, we will introduce how to use convolutional neural networks to perform object detection from image. This is one of the important areas of computer vision. In order to build up to object detection, we first learn about how we can get the object localization or landmark by a neural network. And then I will give the detail of sliding windows detection algorithm and introduce how to use the convolutional implementation of sliding windows to speed up the process. Then we will introduce the transfer learning and how to prepare your own learning data for training networks.
DOI: 10.1007/978-981-15-0187-6_18
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::03a12a9750f37882a1b8620af6ead33f
https://doi.org/10.1007/978-981-15-0187-6_18
Rights: CLOSED
رقم الانضمام: edsair.doi...........03a12a9750f37882a1b8620af6ead33f
قاعدة البيانات: OpenAIRE
الوصف
DOI:10.1007/978-981-15-0187-6_18