Generalization of the Absolute Cesàro Space and Some Matrix Transformations

التفاصيل البيبلوغرافية
العنوان: Generalization of the Absolute Cesàro Space and Some Matrix Transformations
المؤلفون: Gökçe, F., Sarıgöl, M.A.
بيانات النشر: Taylor and Francis Inc., 2019.
سنة النشر: 2019
مصطلحات موضوعية: Positive numbers, Bounded operators, Cesàro matrix, Functional analysis, Schauder basis, Linear transformations, sequence spaces, matrix transformations, Sequence space, Matrix transformation, Absolute summability, Mathematical techniques
الوصف: The space l k was extended to the space l p by Maddox, where p=(p n ) is a bounded sequence of positive numbers. The series space |C λ,µ |k has more recently been studied by Hazar and Sarıgöl. In this article, following Maddox we derived a more general series space |C λ,µ |(p) and show that it is a paranormed space and linearly isomorphic to the space l(p) Also, we construct its α-, β-, γ-duals and Schauder basis. Further, we characterize the classes of certain matrix transformations on that space and obtain some well-known results as a particular case. © 2019, © 2019 Taylor & Francis Group, LLC.
اللغة: English
URL الوصول: https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::b8a394f447dc4fa1ed502169065225f2
Rights: OPEN
رقم الانضمام: edsair.dedup.wf.001..b8a394f447dc4fa1ed502169065225f2
قاعدة البيانات: OpenAIRE