Stratégie d'ordonnancement prenant en compte des critères de durée de production et de consommation d'énergie pour le management environnemental

التفاصيل البيبلوغرافية
العنوان: Stratégie d'ordonnancement prenant en compte des critères de durée de production et de consommation d'énergie pour le management environnemental
المؤلفون: Al-Qaseer, Firas Abdulmajeed
المساهمون: Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Université Clermont Auvergne [2017-2020], Denis Gien, Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
المصدر: Environmental Engineering. Université Clermont Auvergne [2017-2020], 2018. English. ⟨NNT : 2018CLFAC028⟩
بيانات النشر: HAL CCSD, 2018.
سنة النشر: 2018
مصطلحات موضوعية: Efficacité énergétique, Environnement Management, Environment Management, [SDE.IE]Environmental Sciences/Environmental Engineering, Genetic Algorithms, [INFO.INFO-OH]Computer Science [cs]/Other [cs.OH], Sustainable manufacturing, Optimisation multi-objectifs, Job shop scheduling, Programmation Mixte Linéaire Intègre, Multi-objective optimization, Production durable, Mixed Integer Linear Programing, Algorithmes génétiques, Job Shop Planification, Energy efficient
الوصف: We present the challenges of environmental management and underline the importance of an energy saving policy for companies. We propose a model to determine the energy balance of manufacturing by integrating the different productive and non-productive phases. We define two purposes for minimizing production time and energy consumption. We apply this model to the scheduling of flexible job-shop workshops. To determine the optimal solution we use two types of methods: - The first is genetic algorithms. We propose different types of algorithms to solve this multi-criteria problem. For example, we propose to develop two populations to minimize the energy consumed and the production time, and to cross them to achieve the overall objective. - The second is constraint programming. We propose to find the optimal solution by developing a double tree to evaluate the energy consumed and the production time. We build our algorithm starting from the tasks to be performed on the machines or from the machines that will perform the tasks. We discuss the construction of the Pareto front to get the best solution.We finish by comparing the different approaches and discussing their relevance to deal with problems of different sizes. We also offer several improvements and some leads for future research.; Nous présentons les enjeux du management environnemental et soulignons l’importance d’une politique d’économie d’énergie pour les entreprises. Nous proposons un modèle pour déterminer le bilan énergétique de la fabrication en intégrant les différentes phases productives et non-productives. Nous définissons un double objectif pour la minimisation de la durée de production et de la consommation d’énergie. Nous appliquons ce modèle à l’ordonnancement d’ateliers job-shop flexibles. Pour déterminer la solution optimale nous utilisons deux classes de méthodes : - La première relève des algorithmes génétiques. Nous proposons différents types d’algorithmes pour résoudre ce problème multicritère. Nous proposons par exemple de faire évoluer deux populations pour minimiser respectivement l’énergie consommée et la durée de production et de les croiser pour atteindre l’objectif global. - La seconde relève de la programmation sous contrainte. Nous proposons de rechercher la solution optimale en développant une double arborescence pour évaluer l’énergie consommée et la durée de production. Nous construisons notre algorithme en partant des tâches à réaliser sur les machines ou en partant des machines qui réaliseront les tâches. Nous discutons de la construction du front de Pareto pour l’obtention de la meilleure solution.Nous terminons en comparant les différentes approches et en discutant leur pertinence pour traiter des problèmes de différentes tailles. Nous proposons également plusieurs améliorations et quelques pistes pour de futures recherches.
اللغة: English
URL الوصول: https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::9078223410b5e275959a7487f3fb3169
https://tel.archives-ouvertes.fr/tel-02058816/file/2018CLFAC028_AL_QASEER.pdf
رقم الانضمام: edsair.dedup.wf.001..9078223410b5e275959a7487f3fb3169
قاعدة البيانات: OpenAIRE