Decompositions of linear maps

التفاصيل البيبلوغرافية
العنوان: Decompositions of linear maps
المؤلفون: Tsui, Sze Kai J.
المصدر: Transactions of the American Mathematical Society; 1977, Vol. 230 Issue: 1 p87-112, 26p
مستخلص: In the first part we show that the decomposition of a bounded selfadjoint linear map from a $ {C^\ast}$-algebra into a given von Neumann algebra as a difference of two bounded positive linear maps is always possible if and only if that range algebra is a ``strictly finite'' von Neumann algebra of type I. In the second part we define a ``polar decomposition'' for some bounded linear maps and show that polar decomposition is possible if and only if the map satisfies a certain ``norm condition". We combine the concepts of polar and positive decompositions to show that polar decomposition for a selfadjoint map is equivalent to a strict Hahn-Jordan decomposition (see Theorems 2.2.4 and 2.2.8).
قاعدة البيانات: Supplemental Index