Academic Journal

Artificial intelligence-driven rational design of ionizable lipids for mRNA delivery.

التفاصيل البيبلوغرافية
العنوان: Artificial intelligence-driven rational design of ionizable lipids for mRNA delivery.
المؤلفون: Wang, Wei, Chen, Kepan, Jiang, Ting, Wu, Yiyang, Wu, Zheng, Ying, Hang, Yu, Hang, Lu, Jing, Lin, Jinzhong, Ouyang, Defang
المصدر: Nature Communications; 12/30/2024, Vol. 15 Issue 1, p1-17, 17p
مصطلحات موضوعية: VIRTUAL high-throughput screening (Drug development), HIGH throughput screening (Drug development), STRUCTURE-activity relationships, COVID-19 vaccines, ARTIFICIAL intelligence
مستخلص: Lipid nanoparticles (LNPs) have proven effective in mRNA delivery, as evidenced by COVID-19 vaccines. Its key ingredient, ionizable lipids, is traditionally optimized by inefficient and costly experimental screening. This study leverages artificial intelligence (AI) and virtual screening to facilitate the rational design of ionizable lipids by predicting two key properties of LNPs, apparent pKa and mRNA delivery efficiency. Nearly 20 million ionizable lipids were evaluated through two iterations of AI-driven generation and screening, yielding three and six new molecules, respectively. In mouse test validation, one lipid from the initial iteration, featuring a benzene ring, demonstrated performance comparable to the control DLin-MC3-DMA (MC3). Notably, all six lipids from the second iteration equaled or outperformed MC3, with one exhibiting efficacy akin to a superior control lipid SM-102. Furthermore, the AI model is interpretable in structure-activity relationships. Ionizable lipid optimization is essential for mRNA therapy via lipid nanoparticle, but experimental screening is investment-intensive. Here, authors developed AI models achieving the rational design of lipid molecules and fast high-throughput screening. [ABSTRACT FROM AUTHOR]
Copyright of Nature Communications is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:20411723
DOI:10.1038/s41467-024-55072-6