التفاصيل البيبلوغرافية
العنوان: |
Detecting high-risk neighborhoods and socioeconomic determinants for common oral diseases in Germany. |
المؤلفون: |
Völker, Sebastian, van der Zee-Neuen, Antje, Rinnert, Alexander, Hanneken, Jessica, Johansson, Tim |
المصدر: |
BMC Oral Health; 8/28/2024, Vol. 24 Issue 1, p1-20, 20p |
مصطلحات موضوعية: |
RISK assessment, DENTAL care, DISEASE clusters, SOCIAL determinants of health, CLUSTER analysis (Statistics), HEALTH insurance reimbursement, MEDICAL quality control, COMPUTERS, DATA analysis, HEALTH insurance, SOCIOECONOMIC factors, MEDICAL care, QUESTIONNAIRES, PRIVATE sector, RETROSPECTIVE studies, DESCRIPTIVE statistics, POPULATION geography, RELATIVE medical risk, ORAL diseases, LONGITUDINAL method, ODDS ratio, MEDICAL records, ACQUISITION of data, MACHINE learning, PUBLIC health, COMPARATIVE studies, CONFIDENCE intervals, NEIGHBORHOOD characteristics, ORAL health, PERIODONTITIS, EMPLOYMENT, DISEASE risk factors |
مصطلحات جغرافية: |
GERMANY |
مستخلص: |
Background: Ideally, health services and interventions to improve dental health should be tailored to local target populations. But this is not the standard. Little is known about risk clusters in dental health care and their evaluation based on small-scale, spatial data, particularly among under-represented groups in health surveys. Our study aims to investigate the incidence rates of major oral diseases among privately insured and self-paying individuals in Germany, explore the spatial clustering of these diseases, and evaluate the influence of social determinants on oral disease risk clusters using advanced data analysis techniques, i.e. machine learning. Methods: A retrospective cohort study was performed to calculate the age- and sex-standardized incidence rate of oral diseases in a study population of privately insured and self-pay patients in Germany who received dental treatment between 2016 and 2021. This was based on anonymized claims data from BFS health finance, Bertelsmann, Dortmund, Germany. The disease history of individuals was recorded and aggregated at the ZIP code 5 level (n = 8871). Results: Statistically significant, spatially compact clusters and relative risks (RR) of incidence rates were identified. By linking disease and socioeconomic databases on the ZIP-5 level, local risk models for each disease were estimated based on spatial-neighborhood variables using different machine learning models. We found that dental diseases were spatially clustered among privately insured and self-payer patients in Germany. Incidence rates within clusters were significantly elevated compared to incidence rates outside clusters. The relative risks (RR) for a new dental disease in primary risk clusters were min = 1.3 (irreversible pulpitis; 95%-CI = 1.3–1.3) and max = 2.7 (periodontitis; 95%-CI = 2.6–2.8), depending on the disease. Despite some similarity in the importance of variables from machine learning models across different clusters, each cluster is unique and must be treated as such when addressing oral public health threats. Conclusions: Our study analyzed the incidence of major oral diseases in Germany and employed spatial methods to identify and characterize high-risk clusters for targeted interventions. We found that private claims data, combined with a network-based, data-driven approach, can effectively pinpoint areas and factors relevant to oral healthcare, including socioeconomic determinants like income and occupational status. The methodology presented here enables the identification of disease clusters of greatest demand, which would allow implementing more targeted approaches and improve access to quality care where they can have the most impact. [ABSTRACT FROM AUTHOR] |
|
Copyright of BMC Oral Health is the property of BioMed Central and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
قاعدة البيانات: |
Complementary Index |