Academic Journal

基于深度生成网络的雷达HRRP生成技术.

التفاصيل البيبلوغرافية
العنوان: 基于深度生成网络的雷达HRRP生成技术. (Chinese)
Alternate Title: Radar HRRP Generation Using Deep Generative Networks. (English)
المؤلفون: 宋益恒, 王彦华, 李 阳, 胡 程
المصدر: Journal of Signal Processing; Jun2019, Vol. 35 Issue 6, p1118-1122, 5p
Abstract (English): Radar data generation plays an important role in radar applications, e.g. radar target recognition. Radar data generation method contains simulation based on statistic model and electromagnetic simulation. These methods are sensitivity to model error, and the electromagnetic simulation always faces heavy calculation. In this paper, a method based on deep generative model is proposed in which a generative model can be trained with only few data samples, and radar data can be generated rapidly without heavy calculation. This method was applied to generate radar HRRP, and the result shows that target HRRP can be generated, and the generated HRRPs are similar to real radar data in visual and in statistic domain, and the generated HRRP can be used to eliminate the effect of imbalance problems. [ABSTRACT FROM AUTHOR]
Abstract (Chinese): 雷达数据生成在目标识别等任务中发挥重要的作用。现有雷达数据生成方法包括电磁仿真、视线追踪等,存在对模型误差敏感、计算量大等问题。本文面向雷达HRRP(high resolution range profile)数据提出一种基于深度生成网络的雷达数据生成方法,在模型先验信息未知的情况下,由雷达HRRP数据集训练得到深度生成网络,从而实现雷达HRRP数据的快速生成。实测数据处理结果表明该方法生成HRRP与数据集中HRRP极为相似,生成HRRP可以应用于增强雷达HRRP数据集、改善数据不平衡问题等。 [ABSTRACT FROM AUTHOR]
Copyright of Journal of Signal Processing is the property of Journal of Signal Processing and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:10030530
DOI:10.16798/j.issn.1003-0530.2019.06.025