Academic Journal

Mixed multiplicity and converse of Rees' theorem for modules.

التفاصيل البيبلوغرافية
العنوان: Mixed multiplicity and converse of Rees' theorem for modules.
المؤلفون: Ferrari, M.D.1 (AUTHOR), Jorge-Perez, V.H.1,2 (AUTHOR), Merighe, L.C.1,3 (AUTHOR)
المصدر: Journal of Algebra. Feb2025:Part B, Vol. 664, p484-510. 27p.
مصطلحات موضوعية: *PRIME ideals, *LOCAL rings (Algebra), *MULTIPLICITY (Mathematics), *ALGEBRA, *NOETHERIAN rings
مستخلص: In this paper, we prove the converse of Rees' mixed multiplicity theorem for modules, which extends the converse of the classical Rees' mixed multiplicity theorem for ideals given by Swanson-Theorem 1.3. Specifically, we demonstrate the following result: Let (R , m) be a d -dimensional formally equidimensional Noetherian local ring and E 1 , ... , E k be finitely generated R -submodules of a free R -module F of positive rank p , with x i ∈ E i for i = 1 , ... , k. Consider S , the symmetric algebra of F , and I E i , the ideal generated by the homogeneous component of degree 1 in the Rees algebra [ R (E i) ] 1. Assuming that (x 1 , ... , x k) S and I E i have the same height k and the same radical, if the Buchsbaum-Rim multiplicity of (x 1 , ... , x k) and the mixed Buchsbaum-Rim multiplicity of the family E 1 , ... , E k are equal, i.e., e BR ((x 1 , ... , x k) p ; R p) = e BR ( E 1 p , ... , E k p , R p) for all prime ideals p minimal over ((x 1 , ... , x k) : R F) , then (x 1 , ... , x k) is a joint reduction of (E 1 , ... , E k). In addition to proving this theorem, we establish some properties that relate joint reduction and mixed Buchsbaum-Rim multiplicities. [ABSTRACT FROM AUTHOR]
قاعدة البيانات: Academic Search Index
الوصف
تدمد:00218693
DOI:10.1016/j.jalgebra.2024.10.048