Academic Journal
A General Toolkit for Advanced Semiconductor Transistors: From Simulation to Machine Learning
العنوان: | A General Toolkit for Advanced Semiconductor Transistors: From Simulation to Machine Learning |
---|---|
المؤلفون: | Antonio J. Garcia-Loureiro, Natalia Seoane, Julian G. Fernandez, Enrique Comesana |
المصدر: | IEEE Journal of the Electron Devices Society, Vol 12, Pp 1057-1064 (2024) |
بيانات النشر: | IEEE, 2024. |
سنة النشر: | 2024 |
المجموعة: | LCC:Electrical engineering. Electronics. Nuclear engineering |
مصطلحات موضوعية: | Semiconductor devices, 3D modelling, finite element method, quantum corrections, variability, post-processing tools, Electrical engineering. Electronics. Nuclear engineering, TK1-9971 |
الوصف: | This work presents an overview of a set of in-house-built software tools intended for state-of-the-art semiconductor device modelling, ranging from numerical simulators to post-processing tools and prediction codes based on statistics and machine learning techniques. First, VENDES is a 3D finite-element based quantum-corrected semi-classical/classical toolbox able to characterise the performance, scalability, and variability of transistors. MLFoMPy is a Python-based tool that post-processes IV characteristics, extracting the most relevant figures of merit and preparing the data for subsequent statistical or machine learning studies. FSM is a variability prediction tool that also pinpoints the most sensitive regions of a device to a specific source of fluctuation. Finally, we also describe machine learning-based prediction tools that were used to obtain full IV curves and specific figures of merit of devices suffering the influence of several sources of variability. |
نوع الوثيقة: | article |
وصف الملف: | electronic resource |
اللغة: | English |
تدمد: | 2168-6734 |
Relation: | https://ieeexplore.ieee.org/document/10531738/; https://doaj.org/toc/2168-6734 |
DOI: | 10.1109/JEDS.2024.3401852 |
URL الوصول: | https://doaj.org/article/997e2ed63b834c1ca0ec3684b7555be1 |
رقم الانضمام: | edsdoj.997e2ed63b834c1ca0ec3684b7555be1 |
قاعدة البيانات: | Directory of Open Access Journals |
كن أول من يترك تعليقا!