Academic Journal

Improved data quality and statistical power of trial-level event-related potentials with Bayesian random-shift Gaussian processes

التفاصيل البيبلوغرافية
العنوان: Improved data quality and statistical power of trial-level event-related potentials with Bayesian random-shift Gaussian processes
المؤلفون: Dustin Pluta, Beniamino Hadj-Amar, Meng Li, Yongxiang Zhao, Francesco Versace, Marina Vannucci
المصدر: Scientific Reports, Vol 14, Iss 1, Pp 1-15 (2024)
بيانات النشر: Nature Portfolio, 2024.
سنة النشر: 2024
المجموعة: LCC:Medicine
LCC:Science
مصطلحات موضوعية: Medicine, Science
الوصف: Abstract Studies of cognitive processes via electroencephalogram (EEG) recordings often analyze group-level event-related potentials (ERPs) averaged over multiple subjects and trials. This averaging procedure can obscure scientifically relevant variability across subjects and trials, but has been necessary due to the difficulties posed by inference of trial-level ERPs. We introduce the Bayesian Random Phase-Amplitude Gaussian Process (RPAGP) model, for inference of trial-level amplitude, latency, and ERP waveforms. We apply RPAGP to data from a study of ERP responses to emotionally arousing images. The model estimates of trial-specific signals are shown to greatly improve statistical power in detecting significant differences in experimental conditions compared to existing methods. Our results suggest that replacing the observed data with the de-noised RPAGP predictions can potentially improve the sensitivity and accuracy of many of the existing ERP analysis pipelines.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2045-2322
Relation: https://doaj.org/toc/2045-2322
DOI: 10.1038/s41598-024-59579-2
URL الوصول: https://doaj.org/article/4b7dcb6ee1bd4f339200eab0dd9c680e
رقم الانضمام: edsdoj.4b7dcb6ee1bd4f339200eab0dd9c680e
قاعدة البيانات: Directory of Open Access Journals