Academic Journal

Deep Learning-based Side Channel Attack on HMAC SM3

التفاصيل البيبلوغرافية
العنوان: Deep Learning-based Side Channel Attack on HMAC SM3
المؤلفون: Xin Jin, Yong Xiao, Shiqi Li, Suying Wang
المصدر: International Journal of Interactive Multimedia and Artificial Intelligence, Vol 6, Iss 4, Pp 113-120 (2021)
بيانات النشر: Universidad Internacional de La Rioja (UNIR), 2021.
سنة النشر: 2021
المجموعة: LCC:Technology
مصطلحات موضوعية: convolution neural network, hmac, side channel analysis, Technology
الوصف: SM3 is a Chinese hash standard. HMAC SM3 uses a secret key to encrypt the input text and gives an output as the HMAC of the input text. If the key is recovered, adversaries can easily forge a valid HMAC. We can choose different methods, such as traditional side channel analysis, template attack-based side channel analysis to recover the secret key. Deep Learning has recently been introduced as a new alternative to perform Side-Channel analysis. In this paper, we try to recover the secret key with deep learning-based side channel analysis. We should train the network recursively for different parameters by using the same dataset and attack the target dataset with the trained network to recover different parameters. The experiment results show that the secret key can be recovered with deep learning-based side channel analysis. This work demonstrates the interests of this new method and show that this attack can be performed in practice.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1989-1660
Relation: https://www.ijimai.org/journal/bibcite/reference/2841; https://doaj.org/toc/1989-1660
DOI: 10.9781/ijimai.2020.11.007
URL الوصول: https://doaj.org/article/4a01ae57d82843b6af413cc7c5f75db2
رقم الانضمام: edsdoj.4a01ae57d82843b6af413cc7c5f75db2
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:19891660
DOI:10.9781/ijimai.2020.11.007