Academic Journal
Physics-informed deep learning approach for modeling crustal deformation
العنوان: | Physics-informed deep learning approach for modeling crustal deformation |
---|---|
المؤلفون: | Tomohisa Okazaki, Takeo Ito, Kazuro Hirahara, Naonori Ueda |
المصدر: | Nature Communications, Vol 13, Iss 1, Pp 1-9 (2022) |
بيانات النشر: | Nature Portfolio, 2022. |
سنة النشر: | 2022 |
المجموعة: | LCC:Science |
مصطلحات موضوعية: | Science |
الوصف: | Modeling crustal deformation is critical for understanding of tectonic processes and earthquake potentials. Here, the authors propose a deep learning approach that can be extended in a straightforward manner to complex crustal structures and inverse problems. |
نوع الوثيقة: | article |
وصف الملف: | electronic resource |
اللغة: | English |
تدمد: | 2041-1723 |
Relation: | https://doaj.org/toc/2041-1723 |
DOI: | 10.1038/s41467-022-34922-1 |
URL الوصول: | https://doaj.org/article/a2c4df6a89bd4d758cb3e695afcf45d1 |
رقم الانضمام: | edsdoj.2c4df6a89bd4d758cb3e695afcf45d1 |
قاعدة البيانات: | Directory of Open Access Journals |
ResultId |
1 |
---|---|
Header |
edsdoj Directory of Open Access Journals edsdoj.2c4df6a89bd4d758cb3e695afcf45d1 978 3 Academic Journal academicJournal 978.480224609375 |
PLink |
https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.2c4df6a89bd4d758cb3e695afcf45d1&custid=s6537998&authtype=sso |
FullText |
Array
(
[Availability] => 0
)
Array ( [0] => Array ( [Url] => https://doaj.org/article/a2c4df6a89bd4d758cb3e695afcf45d1 [Name] => EDS - DOAJ [Category] => fullText [Text] => View record in DOAJ [MouseOverText] => View record in DOAJ ) [1] => Array ( [Url] => https://resolver.ebscohost.com/openurl?custid=s6537998&groupid=main&authtype=ip,guest&sid=EBSCO:edsdoj&genre=article&issn=20411723&ISBN=&volume=13&issue=1&date=20221101&spage=1&pages=1-9&title=Nature Communications&atitle=Physics-informed%20deep%20learning%20approach%20for%20modeling%20crustal%20deformation&id=DOI:10.1038/s41467-022-34922-1 [Name] => Full Text Finder (s6537998api) [Category] => fullText [Text] => Full Text Finder [Icon] => https://imageserver.ebscohost.com/branding/images/FTF.gif [MouseOverText] => Full Text Finder ) ) |
Items |
Array
(
[Name] => Title
[Label] => Title
[Group] => Ti
[Data] => Physics-informed deep learning approach for modeling crustal deformation
)
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22Tomohisa+Okazaki%22">Tomohisa Okazaki</searchLink><br /><searchLink fieldCode="AR" term="%22Takeo+Ito%22">Takeo Ito</searchLink><br /><searchLink fieldCode="AR" term="%22Kazuro+Hirahara%22">Kazuro Hirahara</searchLink><br /><searchLink fieldCode="AR" term="%22Naonori+Ueda%22">Naonori Ueda</searchLink> ) Array ( [Name] => TitleSource [Label] => Source [Group] => Src [Data] => Nature Communications, Vol 13, Iss 1, Pp 1-9 (2022) ) Array ( [Name] => Publisher [Label] => Publisher Information [Group] => PubInfo [Data] => Nature Portfolio, 2022. ) Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2022 ) Array ( [Name] => Subset [Label] => Collection [Group] => HoldingsInfo [Data] => LCC:Science ) Array ( [Name] => Subject [Label] => Subject Terms [Group] => Su [Data] => <searchLink fieldCode="DE" term="%22Science%22">Science</searchLink> ) Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => Modeling crustal deformation is critical for understanding of tectonic processes and earthquake potentials. Here, the authors propose a deep learning approach that can be extended in a straightforward manner to complex crustal structures and inverse problems. ) Array ( [Name] => TypeDocument [Label] => Document Type [Group] => TypDoc [Data] => article ) Array ( [Name] => Format [Label] => File Description [Group] => SrcInfo [Data] => electronic resource ) Array ( [Name] => Language [Label] => Language [Group] => Lang [Data] => English ) Array ( [Name] => ISSN [Label] => ISSN [Group] => ISSN [Data] => 2041-1723 ) Array ( [Name] => NoteTitleSource [Label] => Relation [Group] => SrcInfo [Data] => https://doaj.org/toc/2041-1723 ) Array ( [Name] => DOI [Label] => DOI [Group] => ID [Data] => 10.1038/s41467-022-34922-1 ) Array ( [Name] => URL [Label] => Access URL [Group] => URL [Data] => <link linkTarget="URL" linkTerm="https://doaj.org/article/a2c4df6a89bd4d758cb3e695afcf45d1" linkWindow="_blank">https://doaj.org/article/a2c4df6a89bd4d758cb3e695afcf45d1</link> ) Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsdoj.2c4df6a89bd4d758cb3e695afcf45d1 ) |
RecordInfo |
Array
(
[BibEntity] => Array
(
[Identifiers] => Array
(
[0] => Array
(
[Type] => doi
[Value] => 10.1038/s41467-022-34922-1
)
)
[Languages] => Array
(
[0] => Array
(
[Text] => English
)
)
[PhysicalDescription] => Array
(
[Pagination] => Array
(
[PageCount] => 9
[StartPage] => 1
)
)
[Subjects] => Array
(
[0] => Array
(
[SubjectFull] => Science
[Type] => general
)
)
[Titles] => Array
(
[0] => Array
(
[TitleFull] => Physics-informed deep learning approach for modeling crustal deformation
[Type] => main
)
)
)
[BibRelationships] => Array
(
[HasContributorRelationships] => Array
(
[0] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Tomohisa Okazaki
)
)
)
[1] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Takeo Ito
)
)
)
[2] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Kazuro Hirahara
)
)
)
[3] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Naonori Ueda
)
)
)
)
[IsPartOfRelationships] => Array
(
[0] => Array
(
[BibEntity] => Array
(
[Dates] => Array
(
[0] => Array
(
[D] => 01
[M] => 11
[Type] => published
[Y] => 2022
)
)
[Identifiers] => Array
(
[0] => Array
(
[Type] => issn-print
[Value] => 20411723
)
)
[Numbering] => Array
(
[0] => Array
(
[Type] => volume
[Value] => 13
)
[1] => Array
(
[Type] => issue
[Value] => 1
)
)
[Titles] => Array
(
[0] => Array
(
[TitleFull] => Nature Communications
[Type] => main
)
)
)
)
)
)
)
|
IllustrationInfo |