Academic Journal

Physics-informed deep learning approach for modeling crustal deformation

التفاصيل البيبلوغرافية
العنوان: Physics-informed deep learning approach for modeling crustal deformation
المؤلفون: Tomohisa Okazaki, Takeo Ito, Kazuro Hirahara, Naonori Ueda
المصدر: Nature Communications, Vol 13, Iss 1, Pp 1-9 (2022)
بيانات النشر: Nature Portfolio, 2022.
سنة النشر: 2022
المجموعة: LCC:Science
مصطلحات موضوعية: Science
الوصف: Modeling crustal deformation is critical for understanding of tectonic processes and earthquake potentials. Here, the authors propose a deep learning approach that can be extended in a straightforward manner to complex crustal structures and inverse problems.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2041-1723
Relation: https://doaj.org/toc/2041-1723
DOI: 10.1038/s41467-022-34922-1
URL الوصول: https://doaj.org/article/a2c4df6a89bd4d758cb3e695afcf45d1
رقم الانضمام: edsdoj.2c4df6a89bd4d758cb3e695afcf45d1
قاعدة البيانات: Directory of Open Access Journals
ResultId 1
Header edsdoj
Directory of Open Access Journals
edsdoj.2c4df6a89bd4d758cb3e695afcf45d1
978
3
Academic Journal
academicJournal
978.480224609375
PLink https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.2c4df6a89bd4d758cb3e695afcf45d1&custid=s6537998&authtype=sso
FullText Array ( [Availability] => 0 )
Array ( [0] => Array ( [Url] => https://doaj.org/article/a2c4df6a89bd4d758cb3e695afcf45d1 [Name] => EDS - DOAJ [Category] => fullText [Text] => View record in DOAJ [MouseOverText] => View record in DOAJ ) [1] => Array ( [Url] => https://resolver.ebscohost.com/openurl?custid=s6537998&groupid=main&authtype=ip,guest&sid=EBSCO:edsdoj&genre=article&issn=20411723&ISBN=&volume=13&issue=1&date=20221101&spage=1&pages=1-9&title=Nature Communications&atitle=Physics-informed%20deep%20learning%20approach%20for%20modeling%20crustal%20deformation&id=DOI:10.1038/s41467-022-34922-1 [Name] => Full Text Finder (s6537998api) [Category] => fullText [Text] => Full Text Finder [Icon] => https://imageserver.ebscohost.com/branding/images/FTF.gif [MouseOverText] => Full Text Finder ) )
Items Array ( [Name] => Title [Label] => Title [Group] => Ti [Data] => Physics-informed deep learning approach for modeling crustal deformation )
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22Tomohisa+Okazaki%22">Tomohisa Okazaki</searchLink><br /><searchLink fieldCode="AR" term="%22Takeo+Ito%22">Takeo Ito</searchLink><br /><searchLink fieldCode="AR" term="%22Kazuro+Hirahara%22">Kazuro Hirahara</searchLink><br /><searchLink fieldCode="AR" term="%22Naonori+Ueda%22">Naonori Ueda</searchLink> )
Array ( [Name] => TitleSource [Label] => Source [Group] => Src [Data] => Nature Communications, Vol 13, Iss 1, Pp 1-9 (2022) )
Array ( [Name] => Publisher [Label] => Publisher Information [Group] => PubInfo [Data] => Nature Portfolio, 2022. )
Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2022 )
Array ( [Name] => Subset [Label] => Collection [Group] => HoldingsInfo [Data] => LCC:Science )
Array ( [Name] => Subject [Label] => Subject Terms [Group] => Su [Data] => <searchLink fieldCode="DE" term="%22Science%22">Science</searchLink> )
Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => Modeling crustal deformation is critical for understanding of tectonic processes and earthquake potentials. Here, the authors propose a deep learning approach that can be extended in a straightforward manner to complex crustal structures and inverse problems. )
Array ( [Name] => TypeDocument [Label] => Document Type [Group] => TypDoc [Data] => article )
Array ( [Name] => Format [Label] => File Description [Group] => SrcInfo [Data] => electronic resource )
Array ( [Name] => Language [Label] => Language [Group] => Lang [Data] => English )
Array ( [Name] => ISSN [Label] => ISSN [Group] => ISSN [Data] => 2041-1723 )
Array ( [Name] => NoteTitleSource [Label] => Relation [Group] => SrcInfo [Data] => https://doaj.org/toc/2041-1723 )
Array ( [Name] => DOI [Label] => DOI [Group] => ID [Data] => 10.1038/s41467-022-34922-1 )
Array ( [Name] => URL [Label] => Access URL [Group] => URL [Data] => <link linkTarget="URL" linkTerm="https://doaj.org/article/a2c4df6a89bd4d758cb3e695afcf45d1" linkWindow="_blank">https://doaj.org/article/a2c4df6a89bd4d758cb3e695afcf45d1</link> )
Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsdoj.2c4df6a89bd4d758cb3e695afcf45d1 )
RecordInfo Array ( [BibEntity] => Array ( [Identifiers] => Array ( [0] => Array ( [Type] => doi [Value] => 10.1038/s41467-022-34922-1 ) ) [Languages] => Array ( [0] => Array ( [Text] => English ) ) [PhysicalDescription] => Array ( [Pagination] => Array ( [PageCount] => 9 [StartPage] => 1 ) ) [Subjects] => Array ( [0] => Array ( [SubjectFull] => Science [Type] => general ) ) [Titles] => Array ( [0] => Array ( [TitleFull] => Physics-informed deep learning approach for modeling crustal deformation [Type] => main ) ) ) [BibRelationships] => Array ( [HasContributorRelationships] => Array ( [0] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Tomohisa Okazaki ) ) ) [1] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Takeo Ito ) ) ) [2] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Kazuro Hirahara ) ) ) [3] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Naonori Ueda ) ) ) ) [IsPartOfRelationships] => Array ( [0] => Array ( [BibEntity] => Array ( [Dates] => Array ( [0] => Array ( [D] => 01 [M] => 11 [Type] => published [Y] => 2022 ) ) [Identifiers] => Array ( [0] => Array ( [Type] => issn-print [Value] => 20411723 ) ) [Numbering] => Array ( [0] => Array ( [Type] => volume [Value] => 13 ) [1] => Array ( [Type] => issue [Value] => 1 ) ) [Titles] => Array ( [0] => Array ( [TitleFull] => Nature Communications [Type] => main ) ) ) ) ) ) )
IllustrationInfo