Academic Journal

Infinitely Many Solutions for a Class of Fractional Impulsive Coupled Systems with (p,q)-Laplacian

التفاصيل البيبلوغرافية
العنوان: Infinitely Many Solutions for a Class of Fractional Impulsive Coupled Systems with (p,q)-Laplacian
المؤلفون: Junping Xie, Xingyong Zhang
المصدر: Discrete Dynamics in Nature and Society, Vol 2018 (2018)
بيانات النشر: Hindawi Limited, 2018.
سنة النشر: 2018
المجموعة: LCC:Mathematics
مصطلحات موضوعية: Mathematics, QA1-939
الوصف: By using the symmetric mountain pass lemma, we investigate the problem of existence of infinitely many solutions for a class of fractional impulsive coupled systems with (p,q)-Laplacian, which possesses mixed type nonlinearities, and the nonlinearities do not need to satisfy the well-known Ambrosetti-Rabinowitz condition.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1026-0226
1607-887X
Relation: https://doaj.org/toc/1026-0226; https://doaj.org/toc/1607-887X
DOI: 10.1155/2018/9256192
URL الوصول: https://doaj.org/article/184174d140f040e995a76841b97eadac
رقم الانضمام: edsdoj.184174d140f040e995a76841b97eadac
قاعدة البيانات: Directory of Open Access Journals
ResultId 1
Header edsdoj
Directory of Open Access Journals
edsdoj.184174d140f040e995a76841b97eadac
882
3
Academic Journal
academicJournal
881.885437011719
PLink https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.184174d140f040e995a76841b97eadac&custid=s6537998&authtype=sso
FullText Array ( [Availability] => 0 )
Array ( [0] => Array ( [Url] => https://doaj.org/article/184174d140f040e995a76841b97eadac [Name] => EDS - DOAJ [Category] => fullText [Text] => View record in DOAJ [MouseOverText] => View record in DOAJ ) [1] => Array ( [Url] => https://resolver.ebscohost.com/openurl?custid=s6537998&groupid=main&authtype=ip,guest&sid=EBSCO:edsdoj&genre=article&issn=10260226&ISBN=&volume=2018&issue=&date=20180101&spage=&pages=&title=Discrete Dynamics in Nature and Society&atitle=Infinitely%20Many%20Solutions%20for%20a%20Class%20of%20Fractional%20Impulsive%20Coupled%20Systems%20with%20%28p%2Cq%29-Laplacian&id=DOI:10.1155/2018/9256192 [Name] => Full Text Finder (s6537998api) [Category] => fullText [Text] => Full Text Finder [Icon] => https://imageserver.ebscohost.com/branding/images/FTF.gif [MouseOverText] => Full Text Finder ) )
Items Array ( [Name] => Title [Label] => Title [Group] => Ti [Data] => Infinitely Many Solutions for a Class of Fractional Impulsive Coupled Systems with (p,q)-Laplacian )
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22Junping+Xie%22">Junping Xie</searchLink><br /><searchLink fieldCode="AR" term="%22Xingyong+Zhang%22">Xingyong Zhang</searchLink> )
Array ( [Name] => TitleSource [Label] => Source [Group] => Src [Data] => Discrete Dynamics in Nature and Society, Vol 2018 (2018) )
Array ( [Name] => Publisher [Label] => Publisher Information [Group] => PubInfo [Data] => Hindawi Limited, 2018. )
Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2018 )
Array ( [Name] => Subset [Label] => Collection [Group] => HoldingsInfo [Data] => LCC:Mathematics )
Array ( [Name] => Subject [Label] => Subject Terms [Group] => Su [Data] => <searchLink fieldCode="DE" term="%22Mathematics%22">Mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22QA1-939%22">QA1-939</searchLink> )
Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => By using the symmetric mountain pass lemma, we investigate the problem of existence of infinitely many solutions for a class of fractional impulsive coupled systems with (p,q)-Laplacian, which possesses mixed type nonlinearities, and the nonlinearities do not need to satisfy the well-known Ambrosetti-Rabinowitz condition. )
Array ( [Name] => TypeDocument [Label] => Document Type [Group] => TypDoc [Data] => article )
Array ( [Name] => Format [Label] => File Description [Group] => SrcInfo [Data] => electronic resource )
Array ( [Name] => Language [Label] => Language [Group] => Lang [Data] => English )
Array ( [Name] => ISSN [Label] => ISSN [Group] => ISSN [Data] => 1026-0226<br />1607-887X )
Array ( [Name] => NoteTitleSource [Label] => Relation [Group] => SrcInfo [Data] => https://doaj.org/toc/1026-0226; https://doaj.org/toc/1607-887X )
Array ( [Name] => DOI [Label] => DOI [Group] => ID [Data] => 10.1155/2018/9256192 )
Array ( [Name] => URL [Label] => Access URL [Group] => URL [Data] => <link linkTarget="URL" linkTerm="https://doaj.org/article/184174d140f040e995a76841b97eadac" linkWindow="_blank">https://doaj.org/article/184174d140f040e995a76841b97eadac</link> )
Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsdoj.184174d140f040e995a76841b97eadac )
RecordInfo Array ( [BibEntity] => Array ( [Identifiers] => Array ( [0] => Array ( [Type] => doi [Value] => 10.1155/2018/9256192 ) ) [Languages] => Array ( [0] => Array ( [Text] => English ) ) [Subjects] => Array ( [0] => Array ( [SubjectFull] => Mathematics [Type] => general ) [1] => Array ( [SubjectFull] => QA1-939 [Type] => general ) ) [Titles] => Array ( [0] => Array ( [TitleFull] => Infinitely Many Solutions for a Class of Fractional Impulsive Coupled Systems with (p,q)-Laplacian [Type] => main ) ) ) [BibRelationships] => Array ( [HasContributorRelationships] => Array ( [0] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Junping Xie ) ) ) [1] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Xingyong Zhang ) ) ) ) [IsPartOfRelationships] => Array ( [0] => Array ( [BibEntity] => Array ( [Dates] => Array ( [0] => Array ( [D] => 01 [M] => 01 [Type] => published [Y] => 2018 ) ) [Identifiers] => Array ( [0] => Array ( [Type] => issn-print [Value] => 10260226 ) [1] => Array ( [Type] => issn-print [Value] => 1607887X ) ) [Numbering] => Array ( [0] => Array ( [Type] => volume [Value] => 2018 ) ) [Titles] => Array ( [0] => Array ( [TitleFull] => Discrete Dynamics in Nature and Society [Type] => main ) ) ) ) ) ) )
IllustrationInfo