Academic Journal
Infinitely Many Solutions for a Class of Fractional Impulsive Coupled Systems with (p,q)-Laplacian
العنوان: | Infinitely Many Solutions for a Class of Fractional Impulsive Coupled Systems with (p,q)-Laplacian |
---|---|
المؤلفون: | Junping Xie, Xingyong Zhang |
المصدر: | Discrete Dynamics in Nature and Society, Vol 2018 (2018) |
بيانات النشر: | Hindawi Limited, 2018. |
سنة النشر: | 2018 |
المجموعة: | LCC:Mathematics |
مصطلحات موضوعية: | Mathematics, QA1-939 |
الوصف: | By using the symmetric mountain pass lemma, we investigate the problem of existence of infinitely many solutions for a class of fractional impulsive coupled systems with (p,q)-Laplacian, which possesses mixed type nonlinearities, and the nonlinearities do not need to satisfy the well-known Ambrosetti-Rabinowitz condition. |
نوع الوثيقة: | article |
وصف الملف: | electronic resource |
اللغة: | English |
تدمد: | 1026-0226 1607-887X |
Relation: | https://doaj.org/toc/1026-0226; https://doaj.org/toc/1607-887X |
DOI: | 10.1155/2018/9256192 |
URL الوصول: | https://doaj.org/article/184174d140f040e995a76841b97eadac |
رقم الانضمام: | edsdoj.184174d140f040e995a76841b97eadac |
قاعدة البيانات: | Directory of Open Access Journals |
ResultId |
1 |
---|---|
Header |
edsdoj Directory of Open Access Journals edsdoj.184174d140f040e995a76841b97eadac 882 3 Academic Journal academicJournal 881.885437011719 |
PLink |
https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.184174d140f040e995a76841b97eadac&custid=s6537998&authtype=sso |
FullText |
Array
(
[Availability] => 0
)
Array ( [0] => Array ( [Url] => https://doaj.org/article/184174d140f040e995a76841b97eadac [Name] => EDS - DOAJ [Category] => fullText [Text] => View record in DOAJ [MouseOverText] => View record in DOAJ ) [1] => Array ( [Url] => https://resolver.ebscohost.com/openurl?custid=s6537998&groupid=main&authtype=ip,guest&sid=EBSCO:edsdoj&genre=article&issn=10260226&ISBN=&volume=2018&issue=&date=20180101&spage=&pages=&title=Discrete Dynamics in Nature and Society&atitle=Infinitely%20Many%20Solutions%20for%20a%20Class%20of%20Fractional%20Impulsive%20Coupled%20Systems%20with%20%28p%2Cq%29-Laplacian&id=DOI:10.1155/2018/9256192 [Name] => Full Text Finder (s6537998api) [Category] => fullText [Text] => Full Text Finder [Icon] => https://imageserver.ebscohost.com/branding/images/FTF.gif [MouseOverText] => Full Text Finder ) ) |
Items |
Array
(
[Name] => Title
[Label] => Title
[Group] => Ti
[Data] => Infinitely Many Solutions for a Class of Fractional Impulsive Coupled Systems with (p,q)-Laplacian
)
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22Junping+Xie%22">Junping Xie</searchLink><br /><searchLink fieldCode="AR" term="%22Xingyong+Zhang%22">Xingyong Zhang</searchLink> ) Array ( [Name] => TitleSource [Label] => Source [Group] => Src [Data] => Discrete Dynamics in Nature and Society, Vol 2018 (2018) ) Array ( [Name] => Publisher [Label] => Publisher Information [Group] => PubInfo [Data] => Hindawi Limited, 2018. ) Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2018 ) Array ( [Name] => Subset [Label] => Collection [Group] => HoldingsInfo [Data] => LCC:Mathematics ) Array ( [Name] => Subject [Label] => Subject Terms [Group] => Su [Data] => <searchLink fieldCode="DE" term="%22Mathematics%22">Mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22QA1-939%22">QA1-939</searchLink> ) Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => By using the symmetric mountain pass lemma, we investigate the problem of existence of infinitely many solutions for a class of fractional impulsive coupled systems with (p,q)-Laplacian, which possesses mixed type nonlinearities, and the nonlinearities do not need to satisfy the well-known Ambrosetti-Rabinowitz condition. ) Array ( [Name] => TypeDocument [Label] => Document Type [Group] => TypDoc [Data] => article ) Array ( [Name] => Format [Label] => File Description [Group] => SrcInfo [Data] => electronic resource ) Array ( [Name] => Language [Label] => Language [Group] => Lang [Data] => English ) Array ( [Name] => ISSN [Label] => ISSN [Group] => ISSN [Data] => 1026-0226<br />1607-887X ) Array ( [Name] => NoteTitleSource [Label] => Relation [Group] => SrcInfo [Data] => https://doaj.org/toc/1026-0226; https://doaj.org/toc/1607-887X ) Array ( [Name] => DOI [Label] => DOI [Group] => ID [Data] => 10.1155/2018/9256192 ) Array ( [Name] => URL [Label] => Access URL [Group] => URL [Data] => <link linkTarget="URL" linkTerm="https://doaj.org/article/184174d140f040e995a76841b97eadac" linkWindow="_blank">https://doaj.org/article/184174d140f040e995a76841b97eadac</link> ) Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsdoj.184174d140f040e995a76841b97eadac ) |
RecordInfo |
Array
(
[BibEntity] => Array
(
[Identifiers] => Array
(
[0] => Array
(
[Type] => doi
[Value] => 10.1155/2018/9256192
)
)
[Languages] => Array
(
[0] => Array
(
[Text] => English
)
)
[Subjects] => Array
(
[0] => Array
(
[SubjectFull] => Mathematics
[Type] => general
)
[1] => Array
(
[SubjectFull] => QA1-939
[Type] => general
)
)
[Titles] => Array
(
[0] => Array
(
[TitleFull] => Infinitely Many Solutions for a Class of Fractional Impulsive Coupled Systems with (p,q)-Laplacian
[Type] => main
)
)
)
[BibRelationships] => Array
(
[HasContributorRelationships] => Array
(
[0] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Junping Xie
)
)
)
[1] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Xingyong Zhang
)
)
)
)
[IsPartOfRelationships] => Array
(
[0] => Array
(
[BibEntity] => Array
(
[Dates] => Array
(
[0] => Array
(
[D] => 01
[M] => 01
[Type] => published
[Y] => 2018
)
)
[Identifiers] => Array
(
[0] => Array
(
[Type] => issn-print
[Value] => 10260226
)
[1] => Array
(
[Type] => issn-print
[Value] => 1607887X
)
)
[Numbering] => Array
(
[0] => Array
(
[Type] => volume
[Value] => 2018
)
)
[Titles] => Array
(
[0] => Array
(
[TitleFull] => Discrete Dynamics in Nature and Society
[Type] => main
)
)
)
)
)
)
)
|
IllustrationInfo |