Academic Journal

Two new convolutions for the fractional Fourier transform

التفاصيل البيبلوغرافية
العنوان: Two new convolutions for the fractional Fourier transform
المؤلفون: Anh, P. K., Castro, L. P., Thao, P. T., Tuan, N. M.
بيانات النشر: Springer Verlag
سنة النشر: 2018
المجموعة: Repositório Institucional da Universidade de Aveiro (RIA)
مصطلحات موضوعية: Convolution, Convolution theorem, Fractional Fourier transform, Convolution equation, Filtering
الوصف: In this paper we introduce two novel convolutions for the fractional Fourier transforms (FRFT), and prove natural algebraic properties of the corresponding multiplications such as commutativity, associativity and distributivity, which may be useful in signal processing and other types of applications. We analyze a consequent comparison with other known convolutions, and establish a necessary and sufficient conditions for the solvability of associated convolution equations of both the first and second kind in L^1(R) and L^2(R) spaces. An example satisfying the sufficient and necessary condition for the solvability of the equations is given at the end of the paper.
نوع الوثيقة: article in journal/newspaper
اللغة: English
تدمد: 0929-6212
Relation: FCT - UID/MAT/04106/2013; NAFOSTED; http://hdl.handle.net/10773/16666
DOI: 10.1007/s11277-016-3567-3
الاتاحة: http://hdl.handle.net/10773/16666
https://doi.org/10.1007/s11277-016-3567-3
Rights: openAccess
رقم الانضمام: edsbas.EC4EE4BE
قاعدة البيانات: BASE
ResultId 1
Header edsbas
BASE
edsbas.EC4EE4BE
882
3
Academic Journal
academicJournal
881.885437011719
PLink https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsbas&AN=edsbas.EC4EE4BE&custid=s6537998&authtype=sso
FullText Array ( [Availability] => 0 )
Array ( [0] => Array ( [Url] => http://hdl.handle.net/10773/16666# [Name] => EDS - BASE [Category] => fullText [Text] => View record in BASE [MouseOverText] => View record in BASE ) )
Items Array ( [Name] => Title [Label] => Title [Group] => Ti [Data] => Two new convolutions for the fractional Fourier transform )
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22Anh%2C+P%2E+K%2E%22">Anh, P. K.</searchLink><br /><searchLink fieldCode="AR" term="%22Castro%2C+L%2E+P%2E%22">Castro, L. P.</searchLink><br /><searchLink fieldCode="AR" term="%22Thao%2C+P%2E+T%2E%22">Thao, P. T.</searchLink><br /><searchLink fieldCode="AR" term="%22Tuan%2C+N%2E+M%2E%22">Tuan, N. M.</searchLink> )
Array ( [Name] => Publisher [Label] => Publisher Information [Group] => PubInfo [Data] => Springer Verlag )
Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2018 )
Array ( [Name] => Subset [Label] => Collection [Group] => HoldingsInfo [Data] => Repositório Institucional da Universidade de Aveiro (RIA) )
Array ( [Name] => Subject [Label] => Subject Terms [Group] => Su [Data] => <searchLink fieldCode="DE" term="%22Convolution%22">Convolution</searchLink><br /><searchLink fieldCode="DE" term="%22Convolution+theorem%22">Convolution theorem</searchLink><br /><searchLink fieldCode="DE" term="%22Fractional+Fourier+transform%22">Fractional Fourier transform</searchLink><br /><searchLink fieldCode="DE" term="%22Convolution+equation%22">Convolution equation</searchLink><br /><searchLink fieldCode="DE" term="%22Filtering%22">Filtering</searchLink> )
Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => In this paper we introduce two novel convolutions for the fractional Fourier transforms (FRFT), and prove natural algebraic properties of the corresponding multiplications such as commutativity, associativity and distributivity, which may be useful in signal processing and other types of applications. We analyze a consequent comparison with other known convolutions, and establish a necessary and sufficient conditions for the solvability of associated convolution equations of both the first and second kind in L^1(R) and L^2(R) spaces. An example satisfying the sufficient and necessary condition for the solvability of the equations is given at the end of the paper. )
Array ( [Name] => TypeDocument [Label] => Document Type [Group] => TypDoc [Data] => article in journal/newspaper )
Array ( [Name] => Language [Label] => Language [Group] => Lang [Data] => English )
Array ( [Name] => ISSN [Label] => ISSN [Group] => ISSN [Data] => 0929-6212 )
Array ( [Name] => NoteTitleSource [Label] => Relation [Group] => SrcInfo [Data] => FCT - UID/MAT/04106/2013; NAFOSTED; http://hdl.handle.net/10773/16666 )
Array ( [Name] => DOI [Label] => DOI [Group] => ID [Data] => 10.1007/s11277-016-3567-3 )
Array ( [Name] => URL [Label] => Availability [Group] => URL [Data] => http://hdl.handle.net/10773/16666<br />https://doi.org/10.1007/s11277-016-3567-3 )
Array ( [Name] => Copyright [Label] => Rights [Group] => Cpyrght [Data] => openAccess )
Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsbas.EC4EE4BE )
RecordInfo Array ( [BibEntity] => Array ( [Identifiers] => Array ( [0] => Array ( [Type] => doi [Value] => 10.1007/s11277-016-3567-3 ) ) [Languages] => Array ( [0] => Array ( [Text] => English ) ) [Subjects] => Array ( [0] => Array ( [SubjectFull] => Convolution [Type] => general ) [1] => Array ( [SubjectFull] => Convolution theorem [Type] => general ) [2] => Array ( [SubjectFull] => Fractional Fourier transform [Type] => general ) [3] => Array ( [SubjectFull] => Convolution equation [Type] => general ) [4] => Array ( [SubjectFull] => Filtering [Type] => general ) ) [Titles] => Array ( [0] => Array ( [TitleFull] => Two new convolutions for the fractional Fourier transform [Type] => main ) ) ) [BibRelationships] => Array ( [HasContributorRelationships] => Array ( [0] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Anh, P. K. ) ) ) [1] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Castro, L. P. ) ) ) [2] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Thao, P. T. ) ) ) [3] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Tuan, N. M. ) ) ) ) [IsPartOfRelationships] => Array ( [0] => Array ( [BibEntity] => Array ( [Dates] => Array ( [0] => Array ( [D] => 01 [M] => 01 [Type] => published [Y] => 2018 ) ) [Identifiers] => Array ( [0] => Array ( [Type] => issn-print [Value] => 09296212 ) [1] => Array ( [Type] => issn-locals [Value] => edsbas ) [2] => Array ( [Type] => issn-locals [Value] => edsbas.oa ) ) ) ) ) ) )
IllustrationInfo