Academic Journal
Two new convolutions for the fractional Fourier transform
العنوان: | Two new convolutions for the fractional Fourier transform |
---|---|
المؤلفون: | Anh, P. K., Castro, L. P., Thao, P. T., Tuan, N. M. |
بيانات النشر: | Springer Verlag |
سنة النشر: | 2018 |
المجموعة: | Repositório Institucional da Universidade de Aveiro (RIA) |
مصطلحات موضوعية: | Convolution, Convolution theorem, Fractional Fourier transform, Convolution equation, Filtering |
الوصف: | In this paper we introduce two novel convolutions for the fractional Fourier transforms (FRFT), and prove natural algebraic properties of the corresponding multiplications such as commutativity, associativity and distributivity, which may be useful in signal processing and other types of applications. We analyze a consequent comparison with other known convolutions, and establish a necessary and sufficient conditions for the solvability of associated convolution equations of both the first and second kind in L^1(R) and L^2(R) spaces. An example satisfying the sufficient and necessary condition for the solvability of the equations is given at the end of the paper. |
نوع الوثيقة: | article in journal/newspaper |
اللغة: | English |
تدمد: | 0929-6212 |
Relation: | FCT - UID/MAT/04106/2013; NAFOSTED; http://hdl.handle.net/10773/16666 |
DOI: | 10.1007/s11277-016-3567-3 |
الاتاحة: | http://hdl.handle.net/10773/16666 https://doi.org/10.1007/s11277-016-3567-3 |
Rights: | openAccess |
رقم الانضمام: | edsbas.EC4EE4BE |
قاعدة البيانات: | BASE |
ResultId |
1 |
---|---|
Header |
edsbas BASE edsbas.EC4EE4BE 882 3 Academic Journal academicJournal 881.885437011719 |
PLink |
https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsbas&AN=edsbas.EC4EE4BE&custid=s6537998&authtype=sso |
FullText |
Array
(
[Availability] => 0
)
Array ( [0] => Array ( [Url] => http://hdl.handle.net/10773/16666# [Name] => EDS - BASE [Category] => fullText [Text] => View record in BASE [MouseOverText] => View record in BASE ) ) |
Items |
Array
(
[Name] => Title
[Label] => Title
[Group] => Ti
[Data] => Two new convolutions for the fractional Fourier transform
)
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22Anh%2C+P%2E+K%2E%22">Anh, P. K.</searchLink><br /><searchLink fieldCode="AR" term="%22Castro%2C+L%2E+P%2E%22">Castro, L. P.</searchLink><br /><searchLink fieldCode="AR" term="%22Thao%2C+P%2E+T%2E%22">Thao, P. T.</searchLink><br /><searchLink fieldCode="AR" term="%22Tuan%2C+N%2E+M%2E%22">Tuan, N. M.</searchLink> ) Array ( [Name] => Publisher [Label] => Publisher Information [Group] => PubInfo [Data] => Springer Verlag ) Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2018 ) Array ( [Name] => Subset [Label] => Collection [Group] => HoldingsInfo [Data] => Repositório Institucional da Universidade de Aveiro (RIA) ) Array ( [Name] => Subject [Label] => Subject Terms [Group] => Su [Data] => <searchLink fieldCode="DE" term="%22Convolution%22">Convolution</searchLink><br /><searchLink fieldCode="DE" term="%22Convolution+theorem%22">Convolution theorem</searchLink><br /><searchLink fieldCode="DE" term="%22Fractional+Fourier+transform%22">Fractional Fourier transform</searchLink><br /><searchLink fieldCode="DE" term="%22Convolution+equation%22">Convolution equation</searchLink><br /><searchLink fieldCode="DE" term="%22Filtering%22">Filtering</searchLink> ) Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => In this paper we introduce two novel convolutions for the fractional Fourier transforms (FRFT), and prove natural algebraic properties of the corresponding multiplications such as commutativity, associativity and distributivity, which may be useful in signal processing and other types of applications. We analyze a consequent comparison with other known convolutions, and establish a necessary and sufficient conditions for the solvability of associated convolution equations of both the first and second kind in L^1(R) and L^2(R) spaces. An example satisfying the sufficient and necessary condition for the solvability of the equations is given at the end of the paper. ) Array ( [Name] => TypeDocument [Label] => Document Type [Group] => TypDoc [Data] => article in journal/newspaper ) Array ( [Name] => Language [Label] => Language [Group] => Lang [Data] => English ) Array ( [Name] => ISSN [Label] => ISSN [Group] => ISSN [Data] => 0929-6212 ) Array ( [Name] => NoteTitleSource [Label] => Relation [Group] => SrcInfo [Data] => FCT - UID/MAT/04106/2013; NAFOSTED; http://hdl.handle.net/10773/16666 ) Array ( [Name] => DOI [Label] => DOI [Group] => ID [Data] => 10.1007/s11277-016-3567-3 ) Array ( [Name] => URL [Label] => Availability [Group] => URL [Data] => http://hdl.handle.net/10773/16666<br />https://doi.org/10.1007/s11277-016-3567-3 ) Array ( [Name] => Copyright [Label] => Rights [Group] => Cpyrght [Data] => openAccess ) Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsbas.EC4EE4BE ) |
RecordInfo |
Array
(
[BibEntity] => Array
(
[Identifiers] => Array
(
[0] => Array
(
[Type] => doi
[Value] => 10.1007/s11277-016-3567-3
)
)
[Languages] => Array
(
[0] => Array
(
[Text] => English
)
)
[Subjects] => Array
(
[0] => Array
(
[SubjectFull] => Convolution
[Type] => general
)
[1] => Array
(
[SubjectFull] => Convolution theorem
[Type] => general
)
[2] => Array
(
[SubjectFull] => Fractional Fourier transform
[Type] => general
)
[3] => Array
(
[SubjectFull] => Convolution equation
[Type] => general
)
[4] => Array
(
[SubjectFull] => Filtering
[Type] => general
)
)
[Titles] => Array
(
[0] => Array
(
[TitleFull] => Two new convolutions for the fractional Fourier transform
[Type] => main
)
)
)
[BibRelationships] => Array
(
[HasContributorRelationships] => Array
(
[0] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Anh, P. K.
)
)
)
[1] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Castro, L. P.
)
)
)
[2] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Thao, P. T.
)
)
)
[3] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Tuan, N. M.
)
)
)
)
[IsPartOfRelationships] => Array
(
[0] => Array
(
[BibEntity] => Array
(
[Dates] => Array
(
[0] => Array
(
[D] => 01
[M] => 01
[Type] => published
[Y] => 2018
)
)
[Identifiers] => Array
(
[0] => Array
(
[Type] => issn-print
[Value] => 09296212
)
[1] => Array
(
[Type] => issn-locals
[Value] => edsbas
)
[2] => Array
(
[Type] => issn-locals
[Value] => edsbas.oa
)
)
)
)
)
)
)
|
IllustrationInfo |