Academic Journal

What is the Seiberg–Witten map exactly?

التفاصيل البيبلوغرافية
العنوان: What is the Seiberg–Witten map exactly?
المؤلفون: Kupriyanov, Vladislav G., Sharapov, Alexey A.
المصدر: Journal of physics A: Mathematical and theoretical. 2023. Vol. 56, № 37. P. 375201 (1-15)
سنة النشر: 2023
المجموعة: Tomsk State University Research Library / Электронная библиотека (репозиторий) Томского государственного университета (ТГУ)
مصطلحات موضوعية: Зайберга-Виттена отображение, квазиизоморфизм, некоммутативная калибровочная теория
الوصف: We give a conceptual treatment of the Seiberg–Witten map as a quasi-isomorphism of differential graded algebras. The corresponding algebras have a very simple form, leading to explicit recurrence formulas for the quasi-isomorphism. Unlike most previous papers, our recurrence relations are nonperturbative in the parameter of non-commutativity. Using the language of quasi-isomorphisms, we give a homotopy classification of ambiguities in Seiberg–Witten maps. Possible generalizations to the Wess–Zumino complexes and some other algebras are briefly discussed.
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: English
Relation: koha:001017456; https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001017456
DOI: 10.1088/1751-8121/acee34
الاتاحة: https://doi.org/10.1088/1751-8121/acee34
https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001017456
رقم الانضمام: edsbas.E526FF3B
قاعدة البيانات: BASE
ResultId 1
Header edsbas
BASE
edsbas.E526FF3B
891
3
Academic Journal
academicJournal
890.976379394531
PLink https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsbas&AN=edsbas.E526FF3B&custid=s6537998&authtype=sso
FullText Array ( [Availability] => 0 )
Array ( [0] => Array ( [Url] => https://doi.org/10.1088/1751-8121/acee34# [Name] => EDS - BASE [Category] => fullText [Text] => View record in BASE [MouseOverText] => View record in BASE ) )
Items Array ( [Name] => Title [Label] => Title [Group] => Ti [Data] => What is the Seiberg–Witten map exactly? )
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22Kupriyanov%2C+Vladislav+G%2E%22">Kupriyanov, Vladislav G.</searchLink><br /><searchLink fieldCode="AR" term="%22Sharapov%2C+Alexey+A%2E%22">Sharapov, Alexey A.</searchLink> )
Array ( [Name] => TitleSource [Label] => Source [Group] => Src [Data] => Journal of physics A: Mathematical and theoretical. 2023. Vol. 56, № 37. P. 375201 (1-15) )
Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2023 )
Array ( [Name] => Subset [Label] => Collection [Group] => HoldingsInfo [Data] => Tomsk State University Research Library / Электронная библиотека (репозиторий) Томского государственного университета (ТГУ) )
Array ( [Name] => Subject [Label] => Subject Terms [Group] => Su [Data] => <searchLink fieldCode="DE" term="%22Зайберга-Виттена+отображение%22">Зайберга-Виттена отображение</searchLink><br /><searchLink fieldCode="DE" term="%22квазиизоморфизм%22">квазиизоморфизм</searchLink><br /><searchLink fieldCode="DE" term="%22некоммутативная+калибровочная+теория%22">некоммутативная калибровочная теория</searchLink> )
Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => We give a conceptual treatment of the Seiberg–Witten map as a quasi-isomorphism of differential graded algebras. The corresponding algebras have a very simple form, leading to explicit recurrence formulas for the quasi-isomorphism. Unlike most previous papers, our recurrence relations are nonperturbative in the parameter of non-commutativity. Using the language of quasi-isomorphisms, we give a homotopy classification of ambiguities in Seiberg–Witten maps. Possible generalizations to the Wess–Zumino complexes and some other algebras are briefly discussed. )
Array ( [Name] => TypeDocument [Label] => Document Type [Group] => TypDoc [Data] => article in journal/newspaper )
Array ( [Name] => Format [Label] => File Description [Group] => SrcInfo [Data] => application/pdf )
Array ( [Name] => Language [Label] => Language [Group] => Lang [Data] => English )
Array ( [Name] => NoteTitleSource [Label] => Relation [Group] => SrcInfo [Data] => koha:001017456; https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001017456 )
Array ( [Name] => DOI [Label] => DOI [Group] => ID [Data] => 10.1088/1751-8121/acee34 )
Array ( [Name] => URL [Label] => Availability [Group] => URL [Data] => https://doi.org/10.1088/1751-8121/acee34<br />https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001017456 )
Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsbas.E526FF3B )
RecordInfo Array ( [BibEntity] => Array ( [Identifiers] => Array ( [0] => Array ( [Type] => doi [Value] => 10.1088/1751-8121/acee34 ) ) [Languages] => Array ( [0] => Array ( [Text] => English ) ) [Subjects] => Array ( [0] => Array ( [SubjectFull] => Зайберга-Виттена отображение [Type] => general ) [1] => Array ( [SubjectFull] => квазиизоморфизм [Type] => general ) [2] => Array ( [SubjectFull] => некоммутативная калибровочная теория [Type] => general ) ) [Titles] => Array ( [0] => Array ( [TitleFull] => What is the Seiberg–Witten map exactly? [Type] => main ) ) ) [BibRelationships] => Array ( [HasContributorRelationships] => Array ( [0] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Kupriyanov, Vladislav G. ) ) ) [1] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Sharapov, Alexey A. ) ) ) ) [IsPartOfRelationships] => Array ( [0] => Array ( [BibEntity] => Array ( [Dates] => Array ( [0] => Array ( [D] => 01 [M] => 01 [Type] => published [Y] => 2023 ) ) [Identifiers] => Array ( [0] => Array ( [Type] => issn-locals [Value] => edsbas ) ) [Titles] => Array ( [0] => Array ( [TitleFull] => Journal of physics A: Mathematical and theoretical. 2023. Vol. 56, № 37. P. 375201 (1-15 [Type] => main ) ) ) ) ) ) )
IllustrationInfo