Academic Journal
What is the Seiberg–Witten map exactly?
العنوان: | What is the Seiberg–Witten map exactly? |
---|---|
المؤلفون: | Kupriyanov, Vladislav G., Sharapov, Alexey A. |
المصدر: | Journal of physics A: Mathematical and theoretical. 2023. Vol. 56, № 37. P. 375201 (1-15) |
سنة النشر: | 2023 |
المجموعة: | Tomsk State University Research Library / Электронная библиотека (репозиторий) Томского государственного университета (ТГУ) |
مصطلحات موضوعية: | Зайберга-Виттена отображение, квазиизоморфизм, некоммутативная калибровочная теория |
الوصف: | We give a conceptual treatment of the Seiberg–Witten map as a quasi-isomorphism of differential graded algebras. The corresponding algebras have a very simple form, leading to explicit recurrence formulas for the quasi-isomorphism. Unlike most previous papers, our recurrence relations are nonperturbative in the parameter of non-commutativity. Using the language of quasi-isomorphisms, we give a homotopy classification of ambiguities in Seiberg–Witten maps. Possible generalizations to the Wess–Zumino complexes and some other algebras are briefly discussed. |
نوع الوثيقة: | article in journal/newspaper |
وصف الملف: | application/pdf |
اللغة: | English |
Relation: | koha:001017456; https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001017456 |
DOI: | 10.1088/1751-8121/acee34 |
الاتاحة: | https://doi.org/10.1088/1751-8121/acee34 https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001017456 |
رقم الانضمام: | edsbas.E526FF3B |
قاعدة البيانات: | BASE |
ResultId |
1 |
---|---|
Header |
edsbas BASE edsbas.E526FF3B 891 3 Academic Journal academicJournal 890.976379394531 |
PLink |
https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsbas&AN=edsbas.E526FF3B&custid=s6537998&authtype=sso |
FullText |
Array
(
[Availability] => 0
)
Array ( [0] => Array ( [Url] => https://doi.org/10.1088/1751-8121/acee34# [Name] => EDS - BASE [Category] => fullText [Text] => View record in BASE [MouseOverText] => View record in BASE ) ) |
Items |
Array
(
[Name] => Title
[Label] => Title
[Group] => Ti
[Data] => What is the Seiberg–Witten map exactly?
)
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22Kupriyanov%2C+Vladislav+G%2E%22">Kupriyanov, Vladislav G.</searchLink><br /><searchLink fieldCode="AR" term="%22Sharapov%2C+Alexey+A%2E%22">Sharapov, Alexey A.</searchLink> ) Array ( [Name] => TitleSource [Label] => Source [Group] => Src [Data] => Journal of physics A: Mathematical and theoretical. 2023. Vol. 56, № 37. P. 375201 (1-15) ) Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2023 ) Array ( [Name] => Subset [Label] => Collection [Group] => HoldingsInfo [Data] => Tomsk State University Research Library / Электронная библиотека (репозиторий) Томского государственного университета (ТГУ) ) Array ( [Name] => Subject [Label] => Subject Terms [Group] => Su [Data] => <searchLink fieldCode="DE" term="%22Зайберга-Виттена+отображение%22">Зайберга-Виттена отображение</searchLink><br /><searchLink fieldCode="DE" term="%22квазиизоморфизм%22">квазиизоморфизм</searchLink><br /><searchLink fieldCode="DE" term="%22некоммутативная+калибровочная+теория%22">некоммутативная калибровочная теория</searchLink> ) Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => We give a conceptual treatment of the Seiberg–Witten map as a quasi-isomorphism of differential graded algebras. The corresponding algebras have a very simple form, leading to explicit recurrence formulas for the quasi-isomorphism. Unlike most previous papers, our recurrence relations are nonperturbative in the parameter of non-commutativity. Using the language of quasi-isomorphisms, we give a homotopy classification of ambiguities in Seiberg–Witten maps. Possible generalizations to the Wess–Zumino complexes and some other algebras are briefly discussed. ) Array ( [Name] => TypeDocument [Label] => Document Type [Group] => TypDoc [Data] => article in journal/newspaper ) Array ( [Name] => Format [Label] => File Description [Group] => SrcInfo [Data] => application/pdf ) Array ( [Name] => Language [Label] => Language [Group] => Lang [Data] => English ) Array ( [Name] => NoteTitleSource [Label] => Relation [Group] => SrcInfo [Data] => koha:001017456; https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001017456 ) Array ( [Name] => DOI [Label] => DOI [Group] => ID [Data] => 10.1088/1751-8121/acee34 ) Array ( [Name] => URL [Label] => Availability [Group] => URL [Data] => https://doi.org/10.1088/1751-8121/acee34<br />https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001017456 ) Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsbas.E526FF3B ) |
RecordInfo |
Array
(
[BibEntity] => Array
(
[Identifiers] => Array
(
[0] => Array
(
[Type] => doi
[Value] => 10.1088/1751-8121/acee34
)
)
[Languages] => Array
(
[0] => Array
(
[Text] => English
)
)
[Subjects] => Array
(
[0] => Array
(
[SubjectFull] => Зайберга-Виттена отображение
[Type] => general
)
[1] => Array
(
[SubjectFull] => квазиизоморфизм
[Type] => general
)
[2] => Array
(
[SubjectFull] => некоммутативная калибровочная теория
[Type] => general
)
)
[Titles] => Array
(
[0] => Array
(
[TitleFull] => What is the Seiberg–Witten map exactly?
[Type] => main
)
)
)
[BibRelationships] => Array
(
[HasContributorRelationships] => Array
(
[0] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Kupriyanov, Vladislav G.
)
)
)
[1] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Sharapov, Alexey A.
)
)
)
)
[IsPartOfRelationships] => Array
(
[0] => Array
(
[BibEntity] => Array
(
[Dates] => Array
(
[0] => Array
(
[D] => 01
[M] => 01
[Type] => published
[Y] => 2023
)
)
[Identifiers] => Array
(
[0] => Array
(
[Type] => issn-locals
[Value] => edsbas
)
)
[Titles] => Array
(
[0] => Array
(
[TitleFull] => Journal of physics A: Mathematical and theoretical. 2023. Vol. 56, № 37. P. 375201 (1-15
[Type] => main
)
)
)
)
)
)
)
|
IllustrationInfo |