Academic Journal

Evolving Error Tolerance in BiologicallyInspired iAnt Robots

التفاصيل البيبلوغرافية
العنوان: Evolving Error Tolerance in BiologicallyInspired iAnt Robots
المؤلفون: Joshua P. Hecker, Karl Stolleis, Bjorn Swenson, Kenneth Letendre, Melanie E. Moses
المساهمون: The Pennsylvania State University CiteSeerX Archives
المصدر: http://mitpress.mit.edu/sites/default/files/titles/content/ecal13/978-0-262-31709-2-ch153.pdf.
سنة النشر: 2013
المجموعة: CiteSeerX
الوصف: Evolutionary algorithms can adapt the behavior of individu-als to maximize the fitness of cooperative multi-agent teams. We use a genetic algorithm (GA) to optimize behavior in a team of simulated robots that mimic foraging ants, then trans-fer the evolved behaviors into physical iAnt robots. We in-troduce positional and resource detection error models into our simulation to characterize the empirically-measured sen-sor error in our physical robots. Physical and simulated robots that live in a world with error and use parameters adapted specifically for an error-prone world perform better than robots in the same error-prone world using parameters adapted for an error-free world. Additionally, teams of robots in error-adapted simulations collect resources at the same rate as the physical robots. Our approach extends state-of-the-art biologically-inspired robotics, evolving high-level behav-iors that are robust to sensor error and meaningful for phe-notypic analysis. This work demonstrates the utility of em-ploying evolutionary methods to optimize the performance of distributed robot teams in unknown environments.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
Relation: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.468.8681; http://mitpress.mit.edu/sites/default/files/titles/content/ecal13/978-0-262-31709-2-ch153.pdf
الاتاحة: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.468.8681
http://mitpress.mit.edu/sites/default/files/titles/content/ecal13/978-0-262-31709-2-ch153.pdf
Rights: Metadata may be used without restrictions as long as the oai identifier remains attached to it.
رقم الانضمام: edsbas.DA6ABF88
قاعدة البيانات: BASE
ResultId 1
Header edsbas
BASE
edsbas.DA6ABF88
845
3
Academic Journal
academicJournal
845.314270019531
PLink https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsbas&AN=edsbas.DA6ABF88&custid=s6537998&authtype=sso
FullText Array ( [Availability] => 0 )
Array ( [0] => Array ( [Url] => http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.468.8681# [Name] => EDS - BASE [Category] => fullText [Text] => View record in BASE [MouseOverText] => View record in BASE ) )
Items Array ( [Name] => Title [Label] => Title [Group] => Ti [Data] => Evolving Error Tolerance in BiologicallyInspired iAnt Robots )
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22Joshua+P%2E+Hecker%22">Joshua P. Hecker</searchLink><br /><searchLink fieldCode="AR" term="%22Karl+Stolleis%22">Karl Stolleis</searchLink><br /><searchLink fieldCode="AR" term="%22Bjorn+Swenson%22">Bjorn Swenson</searchLink><br /><searchLink fieldCode="AR" term="%22Kenneth+Letendre%22">Kenneth Letendre</searchLink><br /><searchLink fieldCode="AR" term="%22Melanie+E%2E+Moses%22">Melanie E. Moses</searchLink> )
Array ( [Name] => Author [Label] => Contributors [Group] => Au [Data] => The Pennsylvania State University CiteSeerX Archives )
Array ( [Name] => TitleSource [Label] => Source [Group] => Src [Data] => <i>http://mitpress.mit.edu/sites/default/files/titles/content/ecal13/978-0-262-31709-2-ch153.pdf</i>. )
Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2013 )
Array ( [Name] => Subset [Label] => Collection [Group] => HoldingsInfo [Data] => CiteSeerX )
Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => Evolutionary algorithms can adapt the behavior of individu-als to maximize the fitness of cooperative multi-agent teams. We use a genetic algorithm (GA) to optimize behavior in a team of simulated robots that mimic foraging ants, then trans-fer the evolved behaviors into physical iAnt robots. We in-troduce positional and resource detection error models into our simulation to characterize the empirically-measured sen-sor error in our physical robots. Physical and simulated robots that live in a world with error and use parameters adapted specifically for an error-prone world perform better than robots in the same error-prone world using parameters adapted for an error-free world. Additionally, teams of robots in error-adapted simulations collect resources at the same rate as the physical robots. Our approach extends state-of-the-art biologically-inspired robotics, evolving high-level behav-iors that are robust to sensor error and meaningful for phe-notypic analysis. This work demonstrates the utility of em-ploying evolutionary methods to optimize the performance of distributed robot teams in unknown environments. )
Array ( [Name] => TypeDocument [Label] => Document Type [Group] => TypDoc [Data] => text )
Array ( [Name] => Format [Label] => File Description [Group] => SrcInfo [Data] => application/pdf )
Array ( [Name] => Language [Label] => Language [Group] => Lang [Data] => English )
Array ( [Name] => NoteTitleSource [Label] => Relation [Group] => SrcInfo [Data] => http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.468.8681; http://mitpress.mit.edu/sites/default/files/titles/content/ecal13/978-0-262-31709-2-ch153.pdf )
Array ( [Name] => URL [Label] => Availability [Group] => URL [Data] => http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.468.8681<br />http://mitpress.mit.edu/sites/default/files/titles/content/ecal13/978-0-262-31709-2-ch153.pdf )
Array ( [Name] => Copyright [Label] => Rights [Group] => Cpyrght [Data] => Metadata may be used without restrictions as long as the oai identifier remains attached to it. )
Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsbas.DA6ABF88 )
RecordInfo Array ( [BibEntity] => Array ( [Languages] => Array ( [0] => Array ( [Text] => English ) ) [Titles] => Array ( [0] => Array ( [TitleFull] => Evolving Error Tolerance in BiologicallyInspired iAnt Robots [Type] => main ) ) ) [BibRelationships] => Array ( [HasContributorRelationships] => Array ( [0] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Joshua P. Hecker ) ) ) [1] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Karl Stolleis ) ) ) [2] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Bjorn Swenson ) ) ) [3] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Kenneth Letendre ) ) ) [4] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Melanie E. Moses ) ) ) [5] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => The Pennsylvania State University CiteSeerX Archives ) ) ) ) [IsPartOfRelationships] => Array ( [0] => Array ( [BibEntity] => Array ( [Dates] => Array ( [0] => Array ( [D] => 01 [M] => 01 [Type] => published [Y] => 2013 ) ) [Identifiers] => Array ( [0] => Array ( [Type] => issn-locals [Value] => edsbas ) [1] => Array ( [Type] => issn-locals [Value] => edsbas.oa ) ) [Titles] => Array ( [0] => Array ( [TitleFull] => http://mitpress.mit.edu/sites/default/files/titles/content/ecal13/978-0-262-31709-2-ch153.pdf [Type] => main ) ) ) ) ) ) )
IllustrationInfo