Academic Journal
Evolving Error Tolerance in BiologicallyInspired iAnt Robots
العنوان: | Evolving Error Tolerance in BiologicallyInspired iAnt Robots |
---|---|
المؤلفون: | Joshua P. Hecker, Karl Stolleis, Bjorn Swenson, Kenneth Letendre, Melanie E. Moses |
المساهمون: | The Pennsylvania State University CiteSeerX Archives |
المصدر: | http://mitpress.mit.edu/sites/default/files/titles/content/ecal13/978-0-262-31709-2-ch153.pdf. |
سنة النشر: | 2013 |
المجموعة: | CiteSeerX |
الوصف: | Evolutionary algorithms can adapt the behavior of individu-als to maximize the fitness of cooperative multi-agent teams. We use a genetic algorithm (GA) to optimize behavior in a team of simulated robots that mimic foraging ants, then trans-fer the evolved behaviors into physical iAnt robots. We in-troduce positional and resource detection error models into our simulation to characterize the empirically-measured sen-sor error in our physical robots. Physical and simulated robots that live in a world with error and use parameters adapted specifically for an error-prone world perform better than robots in the same error-prone world using parameters adapted for an error-free world. Additionally, teams of robots in error-adapted simulations collect resources at the same rate as the physical robots. Our approach extends state-of-the-art biologically-inspired robotics, evolving high-level behav-iors that are robust to sensor error and meaningful for phe-notypic analysis. This work demonstrates the utility of em-ploying evolutionary methods to optimize the performance of distributed robot teams in unknown environments. |
نوع الوثيقة: | text |
وصف الملف: | application/pdf |
اللغة: | English |
Relation: | http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.468.8681; http://mitpress.mit.edu/sites/default/files/titles/content/ecal13/978-0-262-31709-2-ch153.pdf |
الاتاحة: | http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.468.8681 http://mitpress.mit.edu/sites/default/files/titles/content/ecal13/978-0-262-31709-2-ch153.pdf |
Rights: | Metadata may be used without restrictions as long as the oai identifier remains attached to it. |
رقم الانضمام: | edsbas.DA6ABF88 |
قاعدة البيانات: | BASE |
ResultId |
1 |
---|---|
Header |
edsbas BASE edsbas.DA6ABF88 845 3 Academic Journal academicJournal 845.314270019531 |
PLink |
https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsbas&AN=edsbas.DA6ABF88&custid=s6537998&authtype=sso |
FullText |
Array
(
[Availability] => 0
)
Array ( [0] => Array ( [Url] => http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.468.8681# [Name] => EDS - BASE [Category] => fullText [Text] => View record in BASE [MouseOverText] => View record in BASE ) ) |
Items |
Array
(
[Name] => Title
[Label] => Title
[Group] => Ti
[Data] => Evolving Error Tolerance in BiologicallyInspired iAnt Robots
)
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22Joshua+P%2E+Hecker%22">Joshua P. Hecker</searchLink><br /><searchLink fieldCode="AR" term="%22Karl+Stolleis%22">Karl Stolleis</searchLink><br /><searchLink fieldCode="AR" term="%22Bjorn+Swenson%22">Bjorn Swenson</searchLink><br /><searchLink fieldCode="AR" term="%22Kenneth+Letendre%22">Kenneth Letendre</searchLink><br /><searchLink fieldCode="AR" term="%22Melanie+E%2E+Moses%22">Melanie E. Moses</searchLink> ) Array ( [Name] => Author [Label] => Contributors [Group] => Au [Data] => The Pennsylvania State University CiteSeerX Archives ) Array ( [Name] => TitleSource [Label] => Source [Group] => Src [Data] => <i>http://mitpress.mit.edu/sites/default/files/titles/content/ecal13/978-0-262-31709-2-ch153.pdf</i>. ) Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2013 ) Array ( [Name] => Subset [Label] => Collection [Group] => HoldingsInfo [Data] => CiteSeerX ) Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => Evolutionary algorithms can adapt the behavior of individu-als to maximize the fitness of cooperative multi-agent teams. We use a genetic algorithm (GA) to optimize behavior in a team of simulated robots that mimic foraging ants, then trans-fer the evolved behaviors into physical iAnt robots. We in-troduce positional and resource detection error models into our simulation to characterize the empirically-measured sen-sor error in our physical robots. Physical and simulated robots that live in a world with error and use parameters adapted specifically for an error-prone world perform better than robots in the same error-prone world using parameters adapted for an error-free world. Additionally, teams of robots in error-adapted simulations collect resources at the same rate as the physical robots. Our approach extends state-of-the-art biologically-inspired robotics, evolving high-level behav-iors that are robust to sensor error and meaningful for phe-notypic analysis. This work demonstrates the utility of em-ploying evolutionary methods to optimize the performance of distributed robot teams in unknown environments. ) Array ( [Name] => TypeDocument [Label] => Document Type [Group] => TypDoc [Data] => text ) Array ( [Name] => Format [Label] => File Description [Group] => SrcInfo [Data] => application/pdf ) Array ( [Name] => Language [Label] => Language [Group] => Lang [Data] => English ) Array ( [Name] => NoteTitleSource [Label] => Relation [Group] => SrcInfo [Data] => http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.468.8681; http://mitpress.mit.edu/sites/default/files/titles/content/ecal13/978-0-262-31709-2-ch153.pdf ) Array ( [Name] => URL [Label] => Availability [Group] => URL [Data] => http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.468.8681<br />http://mitpress.mit.edu/sites/default/files/titles/content/ecal13/978-0-262-31709-2-ch153.pdf ) Array ( [Name] => Copyright [Label] => Rights [Group] => Cpyrght [Data] => Metadata may be used without restrictions as long as the oai identifier remains attached to it. ) Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsbas.DA6ABF88 ) |
RecordInfo |
Array
(
[BibEntity] => Array
(
[Languages] => Array
(
[0] => Array
(
[Text] => English
)
)
[Titles] => Array
(
[0] => Array
(
[TitleFull] => Evolving Error Tolerance in BiologicallyInspired iAnt Robots
[Type] => main
)
)
)
[BibRelationships] => Array
(
[HasContributorRelationships] => Array
(
[0] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Joshua P. Hecker
)
)
)
[1] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Karl Stolleis
)
)
)
[2] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Bjorn Swenson
)
)
)
[3] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Kenneth Letendre
)
)
)
[4] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Melanie E. Moses
)
)
)
[5] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => The Pennsylvania State University CiteSeerX Archives
)
)
)
)
[IsPartOfRelationships] => Array
(
[0] => Array
(
[BibEntity] => Array
(
[Dates] => Array
(
[0] => Array
(
[D] => 01
[M] => 01
[Type] => published
[Y] => 2013
)
)
[Identifiers] => Array
(
[0] => Array
(
[Type] => issn-locals
[Value] => edsbas
)
[1] => Array
(
[Type] => issn-locals
[Value] => edsbas.oa
)
)
[Titles] => Array
(
[0] => Array
(
[TitleFull] => http://mitpress.mit.edu/sites/default/files/titles/content/ecal13/978-0-262-31709-2-ch153.pdf
[Type] => main
)
)
)
)
)
)
)
|
IllustrationInfo |