Dissertation/ Thesis
Short distance constraints from HLbL contribution to the muon anomalous magnetic moment ; Límites de corta distancia de la contribución HLbL al momento magnético anómalo del muon
العنوان: | Short distance constraints from HLbL contribution to the muon anomalous magnetic moment ; Límites de corta distancia de la contribución HLbL al momento magnético anómalo del muon |
---|---|
المؤلفون: | Melo Porras, Daniel Gerardo |
المساهمون: | Fazio, Angelo Raffaele, Reyes Rojas, Edilson Alfonso, Grupo de Campos y Particulas |
بيانات النشر: | Universidad Nacional de Colombia Bogotá - Ciencias - Maestría en Ciencias - Física Facultad de Ciencias Bogotá,Colombia Universidad Nacional de Colombia - Sede Bogotá |
سنة النشر: | 2023 |
مصطلحات موضوعية: | 530 - Física::539 - Física moderna, Partículas (física nuclear), Espectroscopia de electrones, Particles (Nuclear physics), Electron spectroscopy, Anomalous magnetic moment of the muon, HLbL, Mellin-Barnes, OPE, Hypergeometric series, Multivariate residues, Kinematic singularities |
الوصف: | Hadronic Light by Light (HLbL) scattering is not the biggest hadronic contribution to the muon’s anomalous magnetic moment, but it has the biggest relative uncertainty of all the contributions to that observable. With the tension between the Standard Model value prediction and the measurement at 4.2 σ, theoretical physicists have set their sights on reducing the HLbL contribution’s uncertainty to reduce the tension or push it beyond the discovery threshold. In such scenario, the high energy contribution of HLbL scattering to anomalous magnetic moment of the muon plays an important role. The aim of the research developed in this thesis is to study the HLbL leading order contribution in the maximally symmetric high energy region well above the hadronic threshold limit. This is achieved by performing an operator product expansion of the HLbL tensor, which we do systematically in the background field method. We consider our approach very efficient, also because it allows a straightforward renormalization of the field theoretical results. Our approach is also original and at the best of our knowledge not available in literature. The massless quark loop is the leading term and we compute it without neglecting its tensor structure. To this end, we use a tensor–loop–integral decomposition that does not in- troduce kinematic singularities. The resulting scalar loop integrals with shifted dimensions are computed with their full mass dependence using a Mellin–Barnes representation. Our original method of computation for the quark loop provides an independent check of recent literature results. Furthermore, by conserving the full tensor structure of the amplitude, we are able to perform an explicit check of a proposed kinematic–singularity–free tensor decomposition for the HLbL scattering amplitude that plays a central role in the dispersive computation in the low–energy regime. (Texto tomado de la fuente) ; La dispersión HLbL no es la contribución hadrónica más grande para el momento magnético anómalo del muon, pero esta ... |
نوع الوثيقة: | master thesis |
وصف الملف: | ix, 113 páginas; application/pdf |
اللغة: | English |
Relation: | D. Hanneke, S. Hoogerheide, and G. Gabrielse. In: Physical Review A 83.052122 (2011); D. Hanneke, S. Fogwell, and G. Gabrielse. In: Physical Review A 100.120801 (2008); T. Aoyama, T. Kinoshita, and M.Nio. In: Physical Review D 97.036001 (2018); G. W. Bennet et al. In: Physical Review D 73.072003 (2006); B.Abi et al. In: Physical Review Letters 126.141801 (2021); T. Aoyama et al. In: Physics Reports 887 (2020), pp. 1–166; G. Colangelo et al. In: (2022). arXiv:2203.15810 [hep-ph]. URL: https://doi.org/10.48550/arXiv.2203.15810; J. Grange et al. In: (2015). arXiv:1501.06858 [physics.ins-det]. URL: https://doi.org/10.48550/arXiv.1501.06858; S. J. Brodsky and E. de Rafael. In: Physical Review 168.1620 (1968); B. E. Lautrup and E. de Rafael. In: Physical Review 174.1835 (1968); V.L. Ivanov et al. In: ArXiv 2008.05548 (2020); E. V. Abakumovaa, M. N. Achasova, and V. E. Blinova. In: Nuclear Instruments and Methods 651 (2011), pp. 21–29; F. Ambrosino et al. In: Physical Letters B 670.285 (2009); B. Aubert et al. In: Physical Review Letters 103.231801 (2009); R. Alemany, M. Davier, and A. Hoecker. In: European Physical Journal C2.123 (1998); G. Abbiendi et al. In: European Physical Journal C 139 (2017), p. 77; P. Banerjee et al. In: European Physical Journal C 80.591 (2020); Sz. Borsanyi et al. In: Nature 593 (2021), pp. 51–55; Alexei Bazavov et al. In: (2023). arXiv:2301.08274 [hep-lat]. URL: https://doi.org/10.48550/arXiv.2301.08274; E. De Rafael. In: Inference Review 6.3 (2021). URL: https://inference-review.com/article/muons-and-new-physics; G. Colangelo, M.Hoferichter, M. Procura, et al. In: JHEP 74 (2015); G. Colangelo, M. Hoferichter, M. Procura, et al. In: JHEP 161 (2017); M. Hoferichter et al. In: Physical Review Letters 121.112002 (2018); G. Colangelo et al. In: Physical Review Letters 118.232001 (2017); M. Hayakawa, T. Kinoshita, and A. I. Sanda. In: Physical Review Letters 75.790 (1995); J. Bijnens, E. de Rafael, and H. Zheng. “Low-Energy Behaviour of Two-Point Functions of Quark Currents”. In: Zeitschrift für Physik C Particles and Fields 62 (1994), pp. 437–454; G. Colangelo, M.Hoferichter, M. Procura, et al. In: JHEP 91 (2014); Johan Bijnens et al. In: JHEP 2003.0304 (2003). arXiv:hep-ph/0304222. URL: https://doi.org/10.1088/1126-6708/2003/04/055; M. Knecht and A. Nyffeler. In: The European Physical Journal C 21 (2001). arXiv:hep-ph/0106034, 659––678. URL: https://doi.org/10.1007/s100520100755; G. Colangelo et al. In: Physical Review D 101.051501 (2020). arXiv:1910.11881 [hep-ph]. URL: https://doi.org/10.1103/PhysRevD.101.051501; Gilberto Colangelo et al. In: JHEP 2020.101 (2020). arXiv:1910.13432 [hep-ph]. URL: https://doi.org/10.1007/JHEP03%282020%29101; Gilberto Colangelo et al. In: The European Physical Journal C 81.702 (2021). arXiv:2106.13222 [hep-ph]. URL: https://doi.org/10.1140/epjc/s10052-021-09513-x; J. Bijnens, N. Hermansson-Truedsson, and A. Rodriguez-Sanchez. In: Physical Letters B 798.134994 (2019). arXiv:1908.03331 [hep-ph]; J. Bijnens et al. In: Nuclear and Particle Physics Proceedings 312-317 (2020), pp. 180–184; J. Bijnens, N. Hermansson-Truedsson, and A. Rodríguez-Sánchez. In: Journal of High Energy Physics 04.240 (2021). arXiv:2101.09169v2 [hep-ph]. URL: https://doi.org/10.1007/JHEP04%282021%29240; V. Shtabovenko, R. Mertig, and F. Orellana. In: Computer Physics Communications 256.107478 (2020). arXiv:2001.04407; V. Shtabovenko, R. Mertig, and F. Orellana. In: Computer Physics Communications 207 (2016). arXiv:1601.01167, pp. 432–444; R. Mertig, M. Böhm, and A. Denner. In: Computer Physics Communications 64.3 (1991), pp. 345–359. URL: https://doi.org/10.1016/0010-4655(91)90130-D; B. Ananthanarayan et al. In: Physical Review Letters 127.151601 (2021). arXiv:2012.15108 [hep-th]. URL: https://doi.org/10.1103/PhysRevLett.127.151601; A. I. Davydychev. In: Physics Letters B 263.1 (1991), pp. 107–111. URL: https://doi.org/10.1016/0370-2693(91)91715-8; A. I. Davydychev. In: Journal of Mathematical Physics 32.1052 (1991). URL: doi:10.1063/1.529383; Stanley J. Brodsky and J. D. Sullivan. In: Physical Review 156.5 (1967), pp. 1644–1647; Janis Aldins, Stanley J. Brodsky, and Toichiro Kinoshita. In: Physical Review D 1.8 (1970); Marc Knecht and Nyffeler Andreas. In: Physical Review D 65.073034 (2002); Fred Jegerlehner. STMP – The Anomalous Magnetic Moment of the Muon. Vol. 274. Springer, 2017; F. E. Low. In: Physical Review 110.4 (1958), pp. 974–977; T. Blum et al. In: Physical Review Letters 124.132002 (2020). arXiv:1911.08123 [hep-lat]; E.-H. Chao et al. In: European Physical Journal C 81.651 (2021). arXiv:2104.02632 [hep-lat]; V. Pascalutsa, V. Pauk, and M. Vanderhaeghen. In: Physical Review D 85.116001 (2012). 1204.0740; V. Pauk and M. Vanderhaeghen. In: Physical Review D 90.11 (2014); J. Green et al. In: Physical Review Letters 115.222003 (2015). 1507.01577; I. Danilkin and M. Vanderhaeghen. In: Physical Review D 95.014019 (2017). 1611.04646; F. Hagelstein and V. Pascalutsa. In: Physical Review Letters 120.072002 (2018). 1710.04571; Peskin and D. Schroeder. An introduction to quantum field theory. Addison–Wesley Publishing Company, 1995; M. Sugawara and A. Kanazawa. In: Physical Review 123.1895 (1961). URL: https://doi.org/10.1103/PhysRev.123.1895; S. Mandelstam. In: Physical Review 112.4 (1958); Robert Karplus and Maurice Neuman. In: Physical Review 80.3 (1950), pp. 380–385; W. Bardeen and W. Tung. In: Physical Review 173.5 (1968), pp. 1423–1433; R. Tarrach. In: Nuov. Cim. A 28 (1975), 409––422. URL: https://doi.org/10.1007/BF02894857; Harry Bateman et al. Higher Trascendental Functions – Volume 1. McGraw–Hill, 1953; James D. Bjorken. In: Journal of Mathematical Physics 5.2 (1964), pp. 192–198; (Particle Data Group) R. L. Workman et al. In: Progress of Theoretical and Experimental Physics 2022.083C01 (2022); P. Masjuan and P. Sanchez-Puertas. In: Physical Review Letters D95.054026 (2017). arXiv:1701.05829 [hep-ph]; M. Hoferichter et al. In: European Physical Journal C74.3180 (2014); M. Hoferichter et al. In: JHEP 10.141 (2018). arXiv:1808.04823 [hep-ph]; G. A. Baker. Essentials of Padé Approximants. First. New York: Academic Press, 1975; P. Masjuan and S. Peris. In: Physical Review Letters B686.307 (2010). arXiv:0903.0294 [hep-ph]; C. Hanhart et al. In: European Physical Journal C73.2668 (2013). arXiv:1307.5654 [hep-ph], Erratum: Eur. Phys. J. C75, 242 (2015); C.-W. Xiao et al. In: European Physical Journal C81.1002 (2021). arXiv:1509.02194 [hep-ph]; Simon Holz et al. In: European Physical Journal C82.434 (2022). arXiv:2202.05846 [hep-ph]; A. D. Martin and T. D. Spearman. Elementary Particle Theory. North Holland Publishing Company, 1970; I. Danilkin, O. Deineka, and M. Vanderhaeghen. In: Physical Review Letters D96.114018 (2017). arXiv:1709.08595 [hep-ph]; O. Deineka, I. Danilkin, and M. Vanderhaeghen. In: European Physical Journal Web Conference 199.02005 (2019). arXiv:1808.04117 [hep-ph]; V. Pauk and M. Vanderhaeghen. In: European Physical Journal C74.3008 (2014). arXiv:1401.0832 [hep-ph]; I. Danilkin and M. Vanderhaeghen. In: Physical Review D 95.014019 (2017). arXiv:1611.04646 [hep-ph]; M. Knecht et al. In: Physical Review Letters B787.111 (2018). arXiv:1808.03848 [hep-ph].; R. N. Cahn. In: Physical Review Letters D35.3342 (1987); R. N. Cahn. In: Physical Review Letters D37.833 (1988); [L3 Collaboration] P. Achard et al. In: Physical Review Letters B526.269 (2002); [L3 Collaboration] P. Achard et al. In: JHEP 0703.018 (2007); P. Roig and P. Sanchez-Puertas. In: Physical Review D 101.074019 (2020). arXiv:1910.02881 [hep-ph]; Gernot Eichmann et al. In: (2014). arXiv:1411.7876v2 [hep-ph]; G. P. Lepage and S. J. Brodsky. In: Physics Letters B 87.359 (1979); G. P. Lepage and S. J. Brodsky. In: Physical Review D 22.2157 (1980); V. A. Nesterenko and A. V. Radyushkin. In: Soviet Journal of Nuclear Physics 38.284 (1983); V. A. Novikov et al. In: Nuclear Physics B 237.3 (1984), pp. 525–550; A. S. Gorsky. In: Soviet Journal of Nuclear Physics 46.537 (1987); A. V. Manohar. In: Physics Letters B 244.101 (1990); M. Hoferichter et al. In: Physical Review Letters 121.112002 (2018). arXiv:1805.01471 [hep-ph]; Kenneth Wilson. In: Physical Review 179.1499 (1969); Steven Weinberg. The Quantum Theory of Fields. Cambridge University Press, 1996; B. L. Ioffe and A. V. Smilga. In: Nuclear Physics B 232 (1984), pp. 109–142. URL: doi:10.1016/0550-3213(84)90364-X; A. Czarnecki, W. J. Marciano, and A. Vainshtein. In: Physical Review D 67.073006 (2003). arXiv:hep-ph/0212229; V. A. Novikov et al. In: Fortschritte der Physik 32.11 (1984), pp. 585–622; M. A. Shifman, A. I Vainshtein, and V. I. Zakharov. In: Nuclear Physics B 147 (1979), pp. 385–518; M. A. Shifman et al. In: Physics Letters B 77.1 (1978), pp. 80–83. URL: https://doi.org/10.1016/0370-2693(78)90206-X; V. Fock. In: Physikalische Zeitschrift der Sowjetunion 12 (1937), pp. 404–425; M. A. Shifman. In: Nuclear Physics B173.1 (1980), pp. 13–31; R. Strichartz. A guide to distribution theory and Fourier transform. World Scientific Publishing Company, 2003; L. F. Abbott. In: Acta Physica Polonica B13.1–2 (1981). https://www.actaphys.uj.edu.pl/R/13/1/33/pdf, pp. 33–50; Y. Aoki et al. In: The European Physical Journal C 82.869 (2022). arXiv:2111.09849v2 [hep-lat]; H. Kluberg-Stern and J. B. Zuber. In: Physical Review D 12.2 (1975), pp. 467–481. URL: https://doi.org/10.1103/PhysRevD.12.467; H. Kluberg-Stern and J. B. Zuber. In: Physical Review D 12.2 (1975), pp. 482–488. URL: https://doi.org/10.1103/PhysRevD.12.482; H. Kluberg-Stern and J. B. Zuber. In: Physical Review D 12.10 (1975), pp. 3159–3180. URL: https://doi.org/10.1103/PhysRevD.12.3159; Giampiero Passarino and Martinus Veltman. In: Nuclear Physics B 160.1 (1979), pp. 151–207. URL: https://doi.org/10.1016/0550-3213(79)90234-7; R. Keith Ellis et al. In: Physics Reports 518.4–5 (2012), pp. 141–250. URL: https://doi.org/10.1016/j.physrep.2012.01.008; Dima Bardin and Giampiero Passarino. The Standard Model in the Making: Precision Study of the Elecroweak Interactions. Clarendon Press, Oxford, 1999; É. É. Boos and A. I. Davydychev. In: Theoretical and Mathematical Physics 89 (1991), 1052––1064. URL: https://doi.org/10.1007/BF01016805; Sumit Banik and Samuel Friot. In: (2022). arXiv:2212.11839 [hep-ph]. URL: https://doi.org/10.48550/arXiv.2212.11839; O. N. Zhdanov and A. K. Tsikh. In: Siberian Mathematical Journal 39.2 (1998), pp. 245–260. URL: https://doi.org/10.1007/BF02677509; Oleg Igorevich Marichev. Methods for Computing Integrals of Special Functions. Minsk, 1978; Henri Skoda and Jean-Marie Trepreau, eds. Aspects of Mathematics: Contributions to Complex Analysis and Analytic Geometry. Vol. E26. Springer, 1994, pp. 233–241; Kasper J. Larsen and Robbert Rietkerk. In: Computer Physics Communications 222 (2018). arXiv:1701.01040 [hep-th], pp. 250–262. URL: https://doi.org/10.1016/j.cpc.2017.08.025; P. Griffiths and J. Harris. Principles of algebraic geometry. John Wiley and Sons, 1978; M. Passare, A .K. Tsikh, and A. A. Cheshel. In: Theoretical and Mathematical Physics 109 (1996), 1544––1555. URL: https://doi.org/10.1007/BF02073871; E. W. Barnes. In: Proceedings of the London Mathematical Society s2-5 (1907), pp. 59–116; H. M. Srivastava and Per W. Karlsson. Multiple Gaussian Hypergeometric Series. John Wiley and Sons, 1985; J. Horn. In: Mathematische Annalen 34 (1889), 544––600. URL: https://doi.org/10.1007/BF01443681; Samuel Friot and David Greynat. In: Journal of Mathematical Physics 53.023508 (2012). arXiv:1107.0328 [math-ph]. URL: https://doi.org/10.1063/1.3679686; A. K. Tsikh. Translations of Mathematical Monographs: Multidimensional Residues and Their Applications. Vol. 103. American Mathematical Society, 1992; Khiem Hong Phan and Dzung Tri Tran. In: Progress of Theoretical and Experimental Physics 2019.6 (2019). arXiv:1904.07430 [hep-ph]. URL: https://doi.org/10.1093/ptep/ptz050; Lucy Joan Slater. Generalized Hypergeometric Functions. Cambridge University Press, 1966; K. Melnikov and A. Vainshtein. In: Physical Review D 70.113006 (2004). arXiv:hep-ph/0312226. URL: https://doi.org/10.1103/PhysRevD.70.113006; Luigi Cappiello et al. In: Physical Review D 102.016009 (2020). arXiv:1912.02779 [hep-ph]. URL: https://doi.org/10.1103/PhysRevD.102.016009; Josef Leutgeb and Anton Rebhan. In: Physical Review D 101.114015 (2020). arXiv:1912.01596 [hep-ph]. URL: https://doi.org/10.1103/PhysRevD.101.114015; Johan Bijnens, Nils Hermansson-Truedsson, and Antonio Rodríguez-Sánchez. In: (2022). arXiv:2211.17183 [hep-ph]. URL: https://doi.org/10.48550/arXiv.2211.17183; Johan Bijnens, Nils Hermansson-Truedsson, and Antonio Rodríguez-Sánchez. In: EPJ Web of Conferences 274.06010 (2022). arXiv:2211.04068 [hep-ph]. URL: https://doi.org/10.1051/epjconf/202227406010; E. V. Shuryak and A. I. Vainshtein. In: Nuclear Physics B 201.1 (1982), pp. 141–158. URL: https://doi.org/10.1016/0550-3213(82)90377-7; A. J. Macfarlane. In: Communications in Mathematical Physics 2 (1966), pp. 133–146. URL: https://doi.org/10.1007/BF01773348; https://repositorio.unal.edu.co/handle/unal/83744; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/ |
الاتاحة: | https://repositorio.unal.edu.co/handle/unal/83744 https://repositorio.unal.edu.co/ |
Rights: | Reconocimiento 4.0 Internacional ; http://creativecommons.org/licenses/by/4.0/ ; info:eu-repo/semantics/openAccess |
رقم الانضمام: | edsbas.C6F2E82B |
قاعدة البيانات: | BASE |
كن أول من يترك تعليقا!