Academic Journal

An Iterative Algorithm for Approximating the Fixed Point of a Contractive Affine Operator

التفاصيل البيبلوغرافية
العنوان: An Iterative Algorithm for Approximating the Fixed Point of a Contractive Affine Operator
المؤلفون: María Isabel Berenguer, Manuel Ruiz Galán
المصدر: Mathematics; Volume 10; Issue 7; Pages: 1012
بيانات النشر: Multidisciplinary Digital Publishing Institute
سنة النشر: 2022
المجموعة: MDPI Open Access Publishing
مصطلحات موضوعية: iterative numerical methods, Schauder bases, Fredholm integral equation
الوصف: First of all, in this paper we obtain a perturbed version of the geometric series theorem, which allows us to present an iterative numerical method to approximate the fixed point of a contractive affine operator. This result requires some approximations that we obtain using the projections associated with certain Schauder bases. Next, an algorithm is designed to approximate the solution of Fredholm’s linear integral equation, and we illustrate the behavior of the method with some numerical examples.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
Relation: Computational and Applied Mathematics; https://dx.doi.org/10.3390/math10071012
DOI: 10.3390/math10071012
الاتاحة: https://doi.org/10.3390/math10071012
Rights: https://creativecommons.org/licenses/by/4.0/
رقم الانضمام: edsbas.A6F1079C
قاعدة البيانات: BASE