Academic Journal

Optimizing Pig Iron Desulfurization Using Physics-Informed Neural Networks (PINNs)

التفاصيل البيبلوغرافية
العنوان: Optimizing Pig Iron Desulfurization Using Physics-Informed Neural Networks (PINNs)
المؤلفون: Andrii Pylypenko, Peter Demeter, Branislav Buľko, Slavomír Hubatka, Lukáš Fogaraš, Jaroslav Legemza, Jaroslav Demeter
المصدر: Engineering Proceedings, Vol 64, Iss 1, p 3 (2024)
بيانات النشر: MDPI AG
سنة النشر: 2024
المجموعة: Directory of Open Access Journals: DOAJ Articles
مصطلحات موضوعية: pig iron, steelmaking, desulfurization, neural networks, Physics-Informed Neural Networks (PINNs), data analytics, Engineering machinery, tools, and implements, TA213-215
الوصف: The aim of the presented research was to optimize a pig iron desulfurization process through data-driven machine learning methods. Utilizing historical data, chemical analysis of pig iron and slag, and the thermodynamics of the process including simulations of the chemical reactions between individual phases, a neural network was trained for the predictive modeling of desulfurization efficiency. The accuracy of the model was enhanced by integrating Physics-Informed Neural Networks (PINNs), which incorporate chemical reaction principles. The results show better performance of PINNs in comparison to the Feedforward Neural Network (FNN) in the generalization of the desulfurization process, bringing better reliability to the model.
نوع الوثيقة: article in journal/newspaper
اللغة: English
تدمد: 2673-4591
Relation: https://www.mdpi.com/2673-4591/64/1/3; https://doaj.org/toc/2673-4591; https://doaj.org/article/4ca449552a8b4e88bcff69080e121f22
DOI: 10.3390/engproc2024064003
الاتاحة: https://doi.org/10.3390/engproc2024064003
https://doaj.org/article/4ca449552a8b4e88bcff69080e121f22
رقم الانضمام: edsbas.A1796F5A
قاعدة البيانات: BASE