Academic Journal

Higher Lower Bounds On Monotone Size

التفاصيل البيبلوغرافية
العنوان: Higher Lower Bounds On Monotone Size
المؤلفون: Danny Harnik, Ran Raz
المساهمون: The Pennsylvania State University CiteSeerX Archives
المصدر: http://www.wisdom.weizmann.ac.il/~ranraz/./publications/Pdani.ps.
سنة النشر: 2000
المجموعة: CiteSeerX
الوصف: We prove a lower bound of 2\Omega i ( n log n ) 1 3 j on the monotone size of an explicit function in monotone-NP (where n is the number of input variables). This is higher than any previous lower bound on the monotone size of a function. The previous best being a lower bound of about 2 \Omega\Gamma n 1 4 ) for Andreev's function, proved in [AlBo87]. Our lower bound is proved by the symmetric version of Razborov's method of approximations. However, we present this method in a new and simpler way: Rather than building approximator functions for all the gates in a circuit, we use a gate elimination argument that is based on a Monotone Switching Lemma. The bound applies for a family of functions, each defined by a construction of a small probability space of c-wise independent random variables. 1 Introduction 1.1 Background and Previous Work A monotone function is one that can be computed by a monotone circuit i.e., a circuit with only AND and OR gates. The monoton.
نوع الوثيقة: text
وصف الملف: application/postscript
اللغة: English
Relation: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.8241; http://www.wisdom.weizmann.ac.il/~ranraz/./publications/Pdani.ps
الاتاحة: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.8241
http://www.wisdom.weizmann.ac.il/~ranraz/./publications/Pdani.ps
Rights: Metadata may be used without restrictions as long as the oai identifier remains attached to it.
رقم الانضمام: edsbas.9AF151CD
قاعدة البيانات: BASE