Conference
On the fairness of disentangled representations
العنوان: | On the fairness of disentangled representations |
---|---|
المؤلفون: | Locatello, F, Abbati, G, Rainforth, T, Bauer, S, Schölkopf, B, Bachem, O |
بيانات النشر: | NeurIPS |
سنة النشر: | 2021 |
المجموعة: | Oxford University Research Archive (ORA) |
الوصف: | Recently there has been a significant interest in learning disentangled representations, as they promise increased interpretability, generalization to unseen scenarios and faster learning on downstream tasks. In this paper, we investigate the usefulness of different notions of disentanglement for improving the fairness of downstream prediction tasks based on representations. We consider the setting where the goal is to predict a target variable based on the learned representation of high-dimensional observations (such as images) that depend on both the target variable and an unobserved sensitive variable. We show that in this setting both the optimal and empirical predictions can be unfair, even if the target variable and the sensitive variable are independent. Analyzing the representations of more than 12 600 trained state-of-the-art disentangled models, we observe that several disentanglement scores are consistently correlated with increased fairness, suggesting that disentanglement may be a useful property to encourage fairness when sensitive variables are not observed. |
نوع الوثيقة: | conference object |
اللغة: | English |
Relation: | https://ora.ox.ac.uk/objects/uuid:09bfd495-4deb-4f13-a615-dc6326614212 |
الاتاحة: | https://ora.ox.ac.uk/objects/uuid:09bfd495-4deb-4f13-a615-dc6326614212 |
Rights: | info:eu-repo/semantics/openAccess |
رقم الانضمام: | edsbas.6045D848 |
قاعدة البيانات: | BASE |
ResultId |
1 |
---|---|
Header |
edsbas BASE edsbas.6045D848 934 3 Conference conference 933.9462890625 |
PLink |
https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsbas&AN=edsbas.6045D848&custid=s6537998&authtype=sso |
FullText |
Array
(
[Availability] => 0
)
Array ( [0] => Array ( [Url] => https://ora.ox.ac.uk/objects/uuid:09bfd495-4deb-4f13-a615-dc6326614212# [Name] => EDS - BASE [Category] => fullText [Text] => View record in BASE [MouseOverText] => View record in BASE ) ) |
Items |
Array
(
[Name] => Title
[Label] => Title
[Group] => Ti
[Data] => On the fairness of disentangled representations
)
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22Locatello%2C+F%22">Locatello, F</searchLink><br /><searchLink fieldCode="AR" term="%22Abbati%2C+G%22">Abbati, G</searchLink><br /><searchLink fieldCode="AR" term="%22Rainforth%2C+T%22">Rainforth, T</searchLink><br /><searchLink fieldCode="AR" term="%22Bauer%2C+S%22">Bauer, S</searchLink><br /><searchLink fieldCode="AR" term="%22Schölkopf%2C+B%22">Schölkopf, B</searchLink><br /><searchLink fieldCode="AR" term="%22Bachem%2C+O%22">Bachem, O</searchLink> ) Array ( [Name] => Publisher [Label] => Publisher Information [Group] => PubInfo [Data] => NeurIPS ) Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2021 ) Array ( [Name] => Subset [Label] => Collection [Group] => HoldingsInfo [Data] => Oxford University Research Archive (ORA) ) Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => Recently there has been a significant interest in learning disentangled representations, as they promise increased interpretability, generalization to unseen scenarios and faster learning on downstream tasks. In this paper, we investigate the usefulness of different notions of disentanglement for improving the fairness of downstream prediction tasks based on representations. We consider the setting where the goal is to predict a target variable based on the learned representation of high-dimensional observations (such as images) that depend on both the target variable and an unobserved sensitive variable. We show that in this setting both the optimal and empirical predictions can be unfair, even if the target variable and the sensitive variable are independent. Analyzing the representations of more than 12 600 trained state-of-the-art disentangled models, we observe that several disentanglement scores are consistently correlated with increased fairness, suggesting that disentanglement may be a useful property to encourage fairness when sensitive variables are not observed. ) Array ( [Name] => TypeDocument [Label] => Document Type [Group] => TypDoc [Data] => conference object ) Array ( [Name] => Language [Label] => Language [Group] => Lang [Data] => English ) Array ( [Name] => NoteTitleSource [Label] => Relation [Group] => SrcInfo [Data] => https://ora.ox.ac.uk/objects/uuid:09bfd495-4deb-4f13-a615-dc6326614212 ) Array ( [Name] => URL [Label] => Availability [Group] => URL [Data] => https://ora.ox.ac.uk/objects/uuid:09bfd495-4deb-4f13-a615-dc6326614212 ) Array ( [Name] => Copyright [Label] => Rights [Group] => Cpyrght [Data] => info:eu-repo/semantics/openAccess ) Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsbas.6045D848 ) |
RecordInfo |
Array
(
[BibEntity] => Array
(
[Languages] => Array
(
[0] => Array
(
[Text] => English
)
)
[Titles] => Array
(
[0] => Array
(
[TitleFull] => On the fairness of disentangled representations
[Type] => main
)
)
)
[BibRelationships] => Array
(
[HasContributorRelationships] => Array
(
[0] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Locatello, F
)
)
)
[1] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Abbati, G
)
)
)
[2] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Rainforth, T
)
)
)
[3] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Bauer, S
)
)
)
[4] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Schölkopf, B
)
)
)
[5] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Bachem, O
)
)
)
)
[IsPartOfRelationships] => Array
(
[0] => Array
(
[BibEntity] => Array
(
[Dates] => Array
(
[0] => Array
(
[D] => 01
[M] => 01
[Type] => published
[Y] => 2021
)
)
[Identifiers] => Array
(
[0] => Array
(
[Type] => issn-locals
[Value] => edsbas
)
[1] => Array
(
[Type] => issn-locals
[Value] => edsbas.oa
)
)
)
)
)
)
)
|
IllustrationInfo |