Academic Journal

Biased random-key genetic algorithm with local search applied to the maximum diversity problem

التفاصيل البيبلوغرافية
العنوان: Biased random-key genetic algorithm with local search applied to the maximum diversity problem
المؤلفون: Silva, Geiza, Leite, André, Ospina, Raydonal, Leiva, Víctor, Figueroa-Zúñiga, Jorge, Castro, Cecília
بيانات النشر: Multidisciplinary Digital Publishing Institute (MDPI)
سنة النشر: 2023
المجموعة: Universidade of Minho: RepositóriUM
مصطلحات موضوعية: Biological diversity conservation, Random-key genetic algorithm, Evolutionary algorithms, Computational simulations, Ciências Naturais::Matemáticas, Educação de qualidade
الوصف: The maximum diversity problem (MDP) aims to select a subset with a predetermined number of elements from a given set, maximizing the diversity among them. This NP-hard problem requires efficient algorithms that can generate high-quality solutions within reasonable computa tional time. In this study, we propose a novel approach that combines the biased random-key genetic algorithm (BRKGA) with local search to tackle the MDP. Our computational study utilizes a com prehensive set of MDPLib instances, and demonstrates the superior average performance of our proposed algorithm compared to existing literature results. The MDP has a wide range of practical applications, including biology, ecology, and management. We provide future research directions for improving the algorithm’s performance and exploring its applicability in real-world scenarios. ; This research was partially supported by the National Council for Scientific and Technological Development (CNPq) through grant 303192/2022-4 (R.O.), and Comissão de Aperfeiçoamento de Pessoal do Nível Superior (CAPES), from the Brazilian government; by FONDECYT, grant number 1200525 (V.L.), from the National Agency for Research and Development (ANID) of the Chilean government under the Ministry of Science and Technology, Knowledge, and Innovation; and by Portuguese funds through the CMAT - Research Centre of Mathematics of University of Minho, references UIDB/00013/2020, UIDP/00013/2020 (C.C.).
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: English
تدمد: 2227-7390
Relation: info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00013%2F2020/PT; info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F00013%2F2020/PT; https://www.mdpi.com/2227-7390/11/14/3072; Silva, G.; Leite, A.; Ospina, R.; Leiva, V.; Figueroa-Zúñiga, J.; Castro, C. Biased Random-Key Genetic Algorithm with Local Search Applied to the Maximum Diversity Problem. Mathematics 2023, 11, 3072. https://doi.org/10.3390/math11143072; https://hdl.handle.net/1822/86364; 3072
DOI: 10.3390/math11143072
الاتاحة: https://hdl.handle.net/1822/86364
https://doi.org/10.3390/math11143072
Rights: info:eu-repo/semantics/openAccess ; http://creativecommons.org/licenses/by/4.0/
رقم الانضمام: edsbas.53F4CE56
قاعدة البيانات: BASE
ResultId 1
Header edsbas
BASE
edsbas.53F4CE56
961
3
Academic Journal
academicJournal
960.976379394531
PLink https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsbas&AN=edsbas.53F4CE56&custid=s6537998&authtype=sso
FullText Array ( [Availability] => 0 )
Array ( [0] => Array ( [Url] => https://hdl.handle.net/1822/86364# [Name] => EDS - BASE [Category] => fullText [Text] => View record in BASE [MouseOverText] => View record in BASE ) [1] => Array ( [Url] => https://resolver.ebscohost.com/openurl?custid=s6537998&groupid=main&authtype=ip,guest&sid=EBSCO:edsbas&genre=article&issn=22277390&ISBN=&volume=&issue=&date=20230101&spage=&pages=&title=Biased random-key genetic algorithm with local search applied to the maximum diversity problem&atitle=Biased%20random-key%20genetic%20algorithm%20with%20local%20search%20applied%20to%20the%20maximum%20diversity%20problem&id=DOI:10.3390/math11143072 [Name] => Full Text Finder (s6537998api) [Category] => fullText [Text] => Full Text Finder [Icon] => https://imageserver.ebscohost.com/branding/images/FTF.gif [MouseOverText] => Full Text Finder ) )
Items Array ( [Name] => Title [Label] => Title [Group] => Ti [Data] => Biased random-key genetic algorithm with local search applied to the maximum diversity problem )
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22Silva%2C+Geiza%22">Silva, Geiza</searchLink><br /><searchLink fieldCode="AR" term="%22Leite%2C+André%22">Leite, André</searchLink><br /><searchLink fieldCode="AR" term="%22Ospina%2C+Raydonal%22">Ospina, Raydonal</searchLink><br /><searchLink fieldCode="AR" term="%22Leiva%2C+Víctor%22">Leiva, Víctor</searchLink><br /><searchLink fieldCode="AR" term="%22Figueroa-Zúñiga%2C+Jorge%22">Figueroa-Zúñiga, Jorge</searchLink><br /><searchLink fieldCode="AR" term="%22Castro%2C+Cecília%22">Castro, Cecília</searchLink> )
Array ( [Name] => Publisher [Label] => Publisher Information [Group] => PubInfo [Data] => Multidisciplinary Digital Publishing Institute (MDPI) )
Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2023 )
Array ( [Name] => Subset [Label] => Collection [Group] => HoldingsInfo [Data] => Universidade of Minho: RepositóriUM )
Array ( [Name] => Subject [Label] => Subject Terms [Group] => Su [Data] => <searchLink fieldCode="DE" term="%22Biological+diversity+conservation%22">Biological diversity conservation</searchLink><br /><searchLink fieldCode="DE" term="%22Random-key+genetic+algorithm%22">Random-key genetic algorithm</searchLink><br /><searchLink fieldCode="DE" term="%22Evolutionary+algorithms%22">Evolutionary algorithms</searchLink><br /><searchLink fieldCode="DE" term="%22Computational+simulations%22">Computational simulations</searchLink><br /><searchLink fieldCode="DE" term="%22Ciências+Naturais%3A%3AMatemáticas%22">Ciências Naturais::Matemáticas</searchLink><br /><searchLink fieldCode="DE" term="%22Educação+de+qualidade%22">Educação de qualidade</searchLink> )
Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => The maximum diversity problem (MDP) aims to select a subset with a predetermined number of elements from a given set, maximizing the diversity among them. This NP-hard problem requires efficient algorithms that can generate high-quality solutions within reasonable computa tional time. In this study, we propose a novel approach that combines the biased random-key genetic algorithm (BRKGA) with local search to tackle the MDP. Our computational study utilizes a com prehensive set of MDPLib instances, and demonstrates the superior average performance of our proposed algorithm compared to existing literature results. The MDP has a wide range of practical applications, including biology, ecology, and management. We provide future research directions for improving the algorithm’s performance and exploring its applicability in real-world scenarios. ; This research was partially supported by the National Council for Scientific and Technological Development (CNPq) through grant 303192/2022-4 (R.O.), and Comissão de Aperfeiçoamento de Pessoal do Nível Superior (CAPES), from the Brazilian government; by FONDECYT, grant number 1200525 (V.L.), from the National Agency for Research and Development (ANID) of the Chilean government under the Ministry of Science and Technology, Knowledge, and Innovation; and by Portuguese funds through the CMAT - Research Centre of Mathematics of University of Minho, references UIDB/00013/2020, UIDP/00013/2020 (C.C.). )
Array ( [Name] => TypeDocument [Label] => Document Type [Group] => TypDoc [Data] => article in journal/newspaper )
Array ( [Name] => Format [Label] => File Description [Group] => SrcInfo [Data] => application/pdf )
Array ( [Name] => Language [Label] => Language [Group] => Lang [Data] => English )
Array ( [Name] => ISSN [Label] => ISSN [Group] => ISSN [Data] => 2227-7390 )
Array ( [Name] => NoteTitleSource [Label] => Relation [Group] => SrcInfo [Data] => info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00013%2F2020/PT; info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F00013%2F2020/PT; https://www.mdpi.com/2227-7390/11/14/3072; Silva, G.; Leite, A.; Ospina, R.; Leiva, V.; Figueroa-Zúñiga, J.; Castro, C. Biased Random-Key Genetic Algorithm with Local Search Applied to the Maximum Diversity Problem. Mathematics 2023, 11, 3072. https://doi.org/10.3390/math11143072; https://hdl.handle.net/1822/86364; 3072 )
Array ( [Name] => DOI [Label] => DOI [Group] => ID [Data] => 10.3390/math11143072 )
Array ( [Name] => URL [Label] => Availability [Group] => URL [Data] => https://hdl.handle.net/1822/86364<br />https://doi.org/10.3390/math11143072 )
Array ( [Name] => Copyright [Label] => Rights [Group] => Cpyrght [Data] => info:eu-repo/semantics/openAccess ; http://creativecommons.org/licenses/by/4.0/ )
Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsbas.53F4CE56 )
RecordInfo Array ( [BibEntity] => Array ( [Identifiers] => Array ( [0] => Array ( [Type] => doi [Value] => 10.3390/math11143072 ) ) [Languages] => Array ( [0] => Array ( [Text] => English ) ) [Subjects] => Array ( [0] => Array ( [SubjectFull] => Biological diversity conservation [Type] => general ) [1] => Array ( [SubjectFull] => Random-key genetic algorithm [Type] => general ) [2] => Array ( [SubjectFull] => Evolutionary algorithms [Type] => general ) [3] => Array ( [SubjectFull] => Computational simulations [Type] => general ) [4] => Array ( [SubjectFull] => Ciências Naturais::Matemáticas [Type] => general ) [5] => Array ( [SubjectFull] => Educação de qualidade [Type] => general ) ) [Titles] => Array ( [0] => Array ( [TitleFull] => Biased random-key genetic algorithm with local search applied to the maximum diversity problem [Type] => main ) ) ) [BibRelationships] => Array ( [HasContributorRelationships] => Array ( [0] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Silva, Geiza ) ) ) [1] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Leite, André ) ) ) [2] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Ospina, Raydonal ) ) ) [3] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Leiva, Víctor ) ) ) [4] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Figueroa-Zúñiga, Jorge ) ) ) [5] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Castro, Cecília ) ) ) ) [IsPartOfRelationships] => Array ( [0] => Array ( [BibEntity] => Array ( [Dates] => Array ( [0] => Array ( [D] => 01 [M] => 01 [Type] => published [Y] => 2023 ) ) [Identifiers] => Array ( [0] => Array ( [Type] => issn-print [Value] => 22277390 ) [1] => Array ( [Type] => issn-locals [Value] => edsbas ) [2] => Array ( [Type] => issn-locals [Value] => edsbas.oa ) ) ) ) ) ) )
IllustrationInfo