Academic Journal

The Identity Problem in ℤ ≀ ℤ Is Decidable

التفاصيل البيبلوغرافية
العنوان: The Identity Problem in ℤ ≀ ℤ Is Decidable
المؤلفون: Dong, Ruiwen
المساهمون: Ruiwen Dong
بيانات النشر: Schloss Dagstuhl – Leibniz-Zentrum für Informatik
سنة النشر: 2023
المجموعة: DROPS - Dagstuhl Research Online Publication Server (Schloss Dagstuhl - Leibniz Center for Informatics )
مصطلحات موضوعية: wreath product, algorithmic group theory, identity problem, polynomial semiring, positive coefficients
الوصف: We consider semigroup algorithmic problems in the wreath product ℤ ≀ ℤ. Our paper focuses on two decision problems introduced by Choffrut and Karhumäki (2005): the Identity Problem (does a semigroup contain the neutral element?) and the Group Problem (is a semigroup a group?) for finitely generated sub-semigroups of ℤ ≀ ℤ. We show that both problems are decidable. Our result complements the undecidability of the Semigroup Membership Problem (does a semigroup contain a given element?) in ℤ ≀ ℤ shown by Lohrey, Steinberg and Zetzsche (ICALP 2013), and contributes an important step towards solving semigroup algorithmic problems in general metabelian groups.
نوع الوثيقة: article in journal/newspaper
conference object
وصف الملف: application/pdf
اللغة: English
Relation: Is Part Of LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023); https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.124
DOI: 10.4230/LIPIcs.ICALP.2023.124
الاتاحة: https://doi.org/10.4230/LIPIcs.ICALP.2023.124
https://nbn-resolving.org/urn:nbn:de:0030-drops-181768
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.124
Rights: https://creativecommons.org/licenses/by/4.0/legalcode
رقم الانضمام: edsbas.3C56BD86
قاعدة البيانات: BASE