Academic Journal

The truncated g-and-h distribution: estimation and application to loss modeling

التفاصيل البيبلوغرافية
العنوان: The truncated g-and-h distribution: estimation and application to loss modeling
المؤلفون: Bee, Marco
المساهمون: Bee, Marco
بيانات النشر: DEU
سنة النشر: 2022
المجموعة: Università degli Studi di Trento: CINECA IRIS
مصطلحات موضوعية: Skewness, Leptokurtosis, Simulation, Truncated distributions
الوصف: The g-and-h distribution is a flexible model for skewed and/or leptokurtic data, which has been shown to be especially effective in actuarial analytics and risk management. Since in these fields data are often recorded only above a certain threshold, we introduce a left-truncated g-and-h distribution. Given the lack of an explicit density, we estimate the parameters via an Approximate Maximum Likelihood approach that uses the empirical characteristic function as summary statistics. Simulation results and an application to fire insurance losses suggest that the method works well and that the explicit consideration of truncation is strongly preferable with respect the use of the non-truncated g-and-h distribution.
نوع الوثيقة: article in journal/newspaper
وصف الملف: ELETTRONICO
اللغة: English
Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:000737767000001; volume:2022, 37; issue:4; firstpage:1771; lastpage:1794; numberofpages:24; journal:COMPUTATIONAL STATISTICS; https://hdl.handle.net/11572/322905
DOI: 10.1007/s00180-021-01179-z
الاتاحة: https://hdl.handle.net/11572/322905
https://doi.org/10.1007/s00180-021-01179-z
https://link.springer.com/article/10.1007/s00180-021-01179-z
Rights: info:eu-repo/semantics/closedAccess
رقم الانضمام: edsbas.38C9125A
قاعدة البيانات: BASE
ResultId 1
Header edsbas
BASE
edsbas.38C9125A
868
3
Academic Journal
academicJournal
867.599182128906
PLink https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsbas&AN=edsbas.38C9125A&custid=s6537998&authtype=sso
FullText Array ( [Availability] => 0 )
Array ( [0] => Array ( [Url] => https://hdl.handle.net/11572/322905# [Name] => EDS - BASE [Category] => fullText [Text] => View record in BASE [MouseOverText] => View record in BASE ) )
Items Array ( [Name] => Title [Label] => Title [Group] => Ti [Data] => The truncated g-and-h distribution: estimation and application to loss modeling )
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22Bee%2C+Marco%22">Bee, Marco</searchLink> )
Array ( [Name] => Author [Label] => Contributors [Group] => Au [Data] => Bee, Marco )
Array ( [Name] => Publisher [Label] => Publisher Information [Group] => PubInfo [Data] => DEU )
Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2022 )
Array ( [Name] => Subset [Label] => Collection [Group] => HoldingsInfo [Data] => Università degli Studi di Trento: CINECA IRIS )
Array ( [Name] => Subject [Label] => Subject Terms [Group] => Su [Data] => <searchLink fieldCode="DE" term="%22Skewness%22">Skewness</searchLink><br /><searchLink fieldCode="DE" term="%22Leptokurtosis%22">Leptokurtosis</searchLink><br /><searchLink fieldCode="DE" term="%22Simulation%22">Simulation</searchLink><br /><searchLink fieldCode="DE" term="%22Truncated+distributions%22">Truncated distributions</searchLink> )
Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => The g-and-h distribution is a flexible model for skewed and/or leptokurtic data, which has been shown to be especially effective in actuarial analytics and risk management. Since in these fields data are often recorded only above a certain threshold, we introduce a left-truncated g-and-h distribution. Given the lack of an explicit density, we estimate the parameters via an Approximate Maximum Likelihood approach that uses the empirical characteristic function as summary statistics. Simulation results and an application to fire insurance losses suggest that the method works well and that the explicit consideration of truncation is strongly preferable with respect the use of the non-truncated g-and-h distribution. )
Array ( [Name] => TypeDocument [Label] => Document Type [Group] => TypDoc [Data] => article in journal/newspaper )
Array ( [Name] => Format [Label] => File Description [Group] => SrcInfo [Data] => ELETTRONICO )
Array ( [Name] => Language [Label] => Language [Group] => Lang [Data] => English )
Array ( [Name] => NoteTitleSource [Label] => Relation [Group] => SrcInfo [Data] => info:eu-repo/semantics/altIdentifier/wos/WOS:000737767000001; volume:2022, 37; issue:4; firstpage:1771; lastpage:1794; numberofpages:24; journal:COMPUTATIONAL STATISTICS; https://hdl.handle.net/11572/322905 )
Array ( [Name] => DOI [Label] => DOI [Group] => ID [Data] => 10.1007/s00180-021-01179-z )
Array ( [Name] => URL [Label] => Availability [Group] => URL [Data] => https://hdl.handle.net/11572/322905<br />https://doi.org/10.1007/s00180-021-01179-z<br />https://link.springer.com/article/10.1007/s00180-021-01179-z )
Array ( [Name] => Copyright [Label] => Rights [Group] => Cpyrght [Data] => info:eu-repo/semantics/closedAccess )
Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsbas.38C9125A )
RecordInfo Array ( [BibEntity] => Array ( [Identifiers] => Array ( [0] => Array ( [Type] => doi [Value] => 10.1007/s00180-021-01179-z ) ) [Languages] => Array ( [0] => Array ( [Text] => English ) ) [Subjects] => Array ( [0] => Array ( [SubjectFull] => Skewness [Type] => general ) [1] => Array ( [SubjectFull] => Leptokurtosis [Type] => general ) [2] => Array ( [SubjectFull] => Simulation [Type] => general ) [3] => Array ( [SubjectFull] => Truncated distributions [Type] => general ) ) [Titles] => Array ( [0] => Array ( [TitleFull] => The truncated g-and-h distribution: estimation and application to loss modeling [Type] => main ) ) ) [BibRelationships] => Array ( [HasContributorRelationships] => Array ( [0] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Bee, Marco ) ) ) [1] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Bee, Marco ) ) ) ) [IsPartOfRelationships] => Array ( [0] => Array ( [BibEntity] => Array ( [Dates] => Array ( [0] => Array ( [D] => 01 [M] => 01 [Type] => published [Y] => 2022 ) ) [Identifiers] => Array ( [0] => Array ( [Type] => issn-locals [Value] => edsbas ) ) ) ) ) ) )
IllustrationInfo