Academic Journal
The truncated g-and-h distribution: estimation and application to loss modeling
العنوان: | The truncated g-and-h distribution: estimation and application to loss modeling |
---|---|
المؤلفون: | Bee, Marco |
المساهمون: | Bee, Marco |
بيانات النشر: | DEU |
سنة النشر: | 2022 |
المجموعة: | Università degli Studi di Trento: CINECA IRIS |
مصطلحات موضوعية: | Skewness, Leptokurtosis, Simulation, Truncated distributions |
الوصف: | The g-and-h distribution is a flexible model for skewed and/or leptokurtic data, which has been shown to be especially effective in actuarial analytics and risk management. Since in these fields data are often recorded only above a certain threshold, we introduce a left-truncated g-and-h distribution. Given the lack of an explicit density, we estimate the parameters via an Approximate Maximum Likelihood approach that uses the empirical characteristic function as summary statistics. Simulation results and an application to fire insurance losses suggest that the method works well and that the explicit consideration of truncation is strongly preferable with respect the use of the non-truncated g-and-h distribution. |
نوع الوثيقة: | article in journal/newspaper |
وصف الملف: | ELETTRONICO |
اللغة: | English |
Relation: | info:eu-repo/semantics/altIdentifier/wos/WOS:000737767000001; volume:2022, 37; issue:4; firstpage:1771; lastpage:1794; numberofpages:24; journal:COMPUTATIONAL STATISTICS; https://hdl.handle.net/11572/322905 |
DOI: | 10.1007/s00180-021-01179-z |
الاتاحة: | https://hdl.handle.net/11572/322905 https://doi.org/10.1007/s00180-021-01179-z https://link.springer.com/article/10.1007/s00180-021-01179-z |
Rights: | info:eu-repo/semantics/closedAccess |
رقم الانضمام: | edsbas.38C9125A |
قاعدة البيانات: | BASE |
ResultId |
1 |
---|---|
Header |
edsbas BASE edsbas.38C9125A 868 3 Academic Journal academicJournal 867.599182128906 |
PLink |
https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsbas&AN=edsbas.38C9125A&custid=s6537998&authtype=sso |
FullText |
Array
(
[Availability] => 0
)
Array ( [0] => Array ( [Url] => https://hdl.handle.net/11572/322905# [Name] => EDS - BASE [Category] => fullText [Text] => View record in BASE [MouseOverText] => View record in BASE ) ) |
Items |
Array
(
[Name] => Title
[Label] => Title
[Group] => Ti
[Data] => The truncated g-and-h distribution: estimation and application to loss modeling
)
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22Bee%2C+Marco%22">Bee, Marco</searchLink> ) Array ( [Name] => Author [Label] => Contributors [Group] => Au [Data] => Bee, Marco ) Array ( [Name] => Publisher [Label] => Publisher Information [Group] => PubInfo [Data] => DEU ) Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2022 ) Array ( [Name] => Subset [Label] => Collection [Group] => HoldingsInfo [Data] => Università degli Studi di Trento: CINECA IRIS ) Array ( [Name] => Subject [Label] => Subject Terms [Group] => Su [Data] => <searchLink fieldCode="DE" term="%22Skewness%22">Skewness</searchLink><br /><searchLink fieldCode="DE" term="%22Leptokurtosis%22">Leptokurtosis</searchLink><br /><searchLink fieldCode="DE" term="%22Simulation%22">Simulation</searchLink><br /><searchLink fieldCode="DE" term="%22Truncated+distributions%22">Truncated distributions</searchLink> ) Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => The g-and-h distribution is a flexible model for skewed and/or leptokurtic data, which has been shown to be especially effective in actuarial analytics and risk management. Since in these fields data are often recorded only above a certain threshold, we introduce a left-truncated g-and-h distribution. Given the lack of an explicit density, we estimate the parameters via an Approximate Maximum Likelihood approach that uses the empirical characteristic function as summary statistics. Simulation results and an application to fire insurance losses suggest that the method works well and that the explicit consideration of truncation is strongly preferable with respect the use of the non-truncated g-and-h distribution. ) Array ( [Name] => TypeDocument [Label] => Document Type [Group] => TypDoc [Data] => article in journal/newspaper ) Array ( [Name] => Format [Label] => File Description [Group] => SrcInfo [Data] => ELETTRONICO ) Array ( [Name] => Language [Label] => Language [Group] => Lang [Data] => English ) Array ( [Name] => NoteTitleSource [Label] => Relation [Group] => SrcInfo [Data] => info:eu-repo/semantics/altIdentifier/wos/WOS:000737767000001; volume:2022, 37; issue:4; firstpage:1771; lastpage:1794; numberofpages:24; journal:COMPUTATIONAL STATISTICS; https://hdl.handle.net/11572/322905 ) Array ( [Name] => DOI [Label] => DOI [Group] => ID [Data] => 10.1007/s00180-021-01179-z ) Array ( [Name] => URL [Label] => Availability [Group] => URL [Data] => https://hdl.handle.net/11572/322905<br />https://doi.org/10.1007/s00180-021-01179-z<br />https://link.springer.com/article/10.1007/s00180-021-01179-z ) Array ( [Name] => Copyright [Label] => Rights [Group] => Cpyrght [Data] => info:eu-repo/semantics/closedAccess ) Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsbas.38C9125A ) |
RecordInfo |
Array
(
[BibEntity] => Array
(
[Identifiers] => Array
(
[0] => Array
(
[Type] => doi
[Value] => 10.1007/s00180-021-01179-z
)
)
[Languages] => Array
(
[0] => Array
(
[Text] => English
)
)
[Subjects] => Array
(
[0] => Array
(
[SubjectFull] => Skewness
[Type] => general
)
[1] => Array
(
[SubjectFull] => Leptokurtosis
[Type] => general
)
[2] => Array
(
[SubjectFull] => Simulation
[Type] => general
)
[3] => Array
(
[SubjectFull] => Truncated distributions
[Type] => general
)
)
[Titles] => Array
(
[0] => Array
(
[TitleFull] => The truncated g-and-h distribution: estimation and application to loss modeling
[Type] => main
)
)
)
[BibRelationships] => Array
(
[HasContributorRelationships] => Array
(
[0] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Bee, Marco
)
)
)
[1] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Bee, Marco
)
)
)
)
[IsPartOfRelationships] => Array
(
[0] => Array
(
[BibEntity] => Array
(
[Dates] => Array
(
[0] => Array
(
[D] => 01
[M] => 01
[Type] => published
[Y] => 2022
)
)
[Identifiers] => Array
(
[0] => Array
(
[Type] => issn-locals
[Value] => edsbas
)
)
)
)
)
)
)
|
IllustrationInfo |