Classical patterns in Mallows permutations

التفاصيل البيبلوغرافية
العنوان: Classical patterns in Mallows permutations
المؤلفون: Dubach, Victor
سنة النشر: 2024
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Probability, Mathematics - Combinatorics, 60C05, 05A05
الوصف: We study classical pattern counts in Mallows random permutations with parameters $(n,q_n)$, as $n\to\infty$. We focus on three different regimes for the parameter $q = q_n$. When $n^{3/2}(1-q)\to0$, we use coupling techniques to prove that pattern counts in Mallows random permutations satisfy a central limit theorem with the same asymptotic mean and variance as in uniformly random permutations. When $q\to1$ and $n(1-q)\to\infty$, we use results on the displacements of permutation points to find the order of magnitude of pattern counts. When $q\in(0,1)$ is fixed, we use the regenerative property of the Mallows distribution to compare pattern counts with certain $U$-statistics, and establish central limit theorems. We also construct a specific Mallows process, that is a coupling of Mallows distributions with $q$ ranging from $0$ to $1$, for which the process of pattern counts satisfies a functional central limit theorem.
Comment: 33 pages
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2410.17228
رقم الانضمام: edsarx.2410.17228
قاعدة البيانات: arXiv