Report
Intersections of iterated shadows
العنوان: | Intersections of iterated shadows |
---|---|
المؤلفون: | Chau, Hou Tin, Ellis, David, Tiba, Marius |
سنة النشر: | 2024 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Combinatorics, Mathematics - Classical Analysis and ODEs, 05D05 |
الوصف: | We show that if $\mathcal{A} \subset {[n] \choose n/2}$ with measure bounded away from zero and from one, then the $\Omega(\sqrt{n})$-iterated upper shadows of $\mathcal{A}$ and $\mathcal{A}^c$ intersect in a set of positive measure. This confirms (in a strong form) a conjecture of Friedgut. It can be seen as a stability result for the Kruskal--Katona theorem. Comment: Minor corrections. 8 pages |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/2409.05487 |
رقم الانضمام: | edsarx.2409.05487 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |