A fitted space-time finite element method for an advection-diffusion problem with moving interfaces

التفاصيل البيبلوغرافية
العنوان: A fitted space-time finite element method for an advection-diffusion problem with moving interfaces
المؤلفون: Nguyen, Quang Huy, Le, Van Chien, Hoang, Phuong Cuc, Ta, Thi Thanh Mai
سنة النشر: 2024
المجموعة: Computer Science
Mathematics
مصطلحات موضوعية: Mathematics - Numerical Analysis
الوصف: This paper presents a space-time interface-fitted finite element method for solving a parabolic advection-diffusion problem with a nonstationary interface. The jumping diffusion coefficient gives rise to the discontinuity of the solution gradient across the interface. We use the Banach-Necas-Babuska theorem to show the well-posedness of the continuous variational problem. A fully discrete finite-element based scheme is analyzed using the Galerkin method and unstructured interface-fitted meshes. An optimal error estimate is established in a discrete energy norm under a globally low but locally high regularity condition. Some numerical results corroborate our theoretical results.
Comment: 20 pages
نوع الوثيقة: Working Paper
DOI: 10.1016/j.apnum.2025.01.002
URL الوصول: http://arxiv.org/abs/2407.08439
رقم الانضمام: edsarx.2407.08439
قاعدة البيانات: arXiv
الوصف
DOI:10.1016/j.apnum.2025.01.002