Eigenvalues of the Hodge Laplacian on digraphs

التفاصيل البيبلوغرافية
العنوان: Eigenvalues of the Hodge Laplacian on digraphs
المؤلفون: Grigor'yan, Alexander, Lin, Yong, Yau, S. -T., Zhang, Haohang
سنة النشر: 2024
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Combinatorics, Mathematics - Algebraic Topology
الوصف: This paper aims to compute and estimate the eigenvalues of the Hodge Laplacians on directed graphs. We have devised a new method for computing Hodge spectra with the following two ingredients. (I) We have observed that the product rule does work for the so-called normalized Hodge operator, denoted by $\Delta _{p}^{(a)},$ where $a$ refers to the weight that is used to redefine the inner product in the spaces $\Omega _{p}$. This together with the K\"{u}nneth formula for product allows us to compute inductively the spectra of all normalized Hodge operators $\Delta _{p}^{(a)}$ on Cartesian powers including $n$-cubes and $n$-tori. (II) We relate in a certain way the spectra of $\Delta _{p}$ and $\Delta_{p}^{(a)}$ to those of operators $\mathcal{L}_{p}=\partial ^{\ast }\partial$ also acting on $\Omega _{p}$. Knowing the spectra of $\Delta_{p}^{(a)}$ for all values of $p$, we compute the spectra of $\mathcal{L}_{p} $ and then the spectra of $\Delta _{p}.$ This program yields the spectra of all operators $\Delta _{p}$ on all $n$-cubes and $n$-tori.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2406.09814
رقم الانضمام: edsarx.2406.09814
قاعدة البيانات: arXiv