التفاصيل البيبلوغرافية
العنوان: |
Eigenvalues of the Hodge Laplacian on digraphs |
المؤلفون: |
Grigor'yan, Alexander, Lin, Yong, Yau, S. -T., Zhang, Haohang |
سنة النشر: |
2024 |
المجموعة: |
Mathematics |
مصطلحات موضوعية: |
Mathematics - Combinatorics, Mathematics - Algebraic Topology |
الوصف: |
This paper aims to compute and estimate the eigenvalues of the Hodge Laplacians on directed graphs. We have devised a new method for computing Hodge spectra with the following two ingredients. (I) We have observed that the product rule does work for the so-called normalized Hodge operator, denoted by $\Delta _{p}^{(a)},$ where $a$ refers to the weight that is used to redefine the inner product in the spaces $\Omega _{p}$. This together with the K\"{u}nneth formula for product allows us to compute inductively the spectra of all normalized Hodge operators $\Delta _{p}^{(a)}$ on Cartesian powers including $n$-cubes and $n$-tori. (II) We relate in a certain way the spectra of $\Delta _{p}$ and $\Delta_{p}^{(a)}$ to those of operators $\mathcal{L}_{p}=\partial ^{\ast }\partial$ also acting on $\Omega _{p}$. Knowing the spectra of $\Delta_{p}^{(a)}$ for all values of $p$, we compute the spectra of $\mathcal{L}_{p} $ and then the spectra of $\Delta _{p}.$ This program yields the spectra of all operators $\Delta _{p}$ on all $n$-cubes and $n$-tori. |
نوع الوثيقة: |
Working Paper |
URL الوصول: |
http://arxiv.org/abs/2406.09814 |
رقم الانضمام: |
edsarx.2406.09814 |
قاعدة البيانات: |
arXiv |