New higher-spin curvatures in flat space

التفاصيل البيبلوغرافية
العنوان: New higher-spin curvatures in flat space
المؤلفون: Boulanger, Nicolas, Campoleoni, Andrea, Pekar, Simon
سنة النشر: 2023
المجموعة: High Energy Physics - Theory
مصطلحات موضوعية: High Energy Physics - Theory
الوصف: It was shown that the Lie algebra underlying higher-spin holography admits a contraction including a Poincar\'e subalgebra in any space-time dimensions. The associated curvatures, however, do not reproduce upon linearisation those that are usually employed to formulate the equations of motion of free massless particles in Minkowski space. We show that, despite this mismatch, the new linearised curvatures can also be used to describe massless higher-spin fields. This suggests a new way to build interacting higher-spin gauge theories in Minkowski space that may admit a holographic description.
Comment: 13 pages
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2306.05367
رقم الانضمام: edsarx.2306.05367
قاعدة البيانات: arXiv
ResultId 1
Header edsarx
arXiv
edsarx.2306.05367
1065
3
Report
report
1065.21704101563
PLink https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.2306.05367&custid=s6537998&authtype=sso
FullText Array ( [Availability] => 0 )
Array ( [0] => Array ( [Url] => http://arxiv.org/abs/2306.05367 [Name] => EDS - Arxiv [Category] => fullText [Text] => View record in Arxiv [MouseOverText] => View record in Arxiv ) )
Items Array ( [Name] => Title [Label] => Title [Group] => Ti [Data] => New higher-spin curvatures in flat space )
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22Boulanger%2C+Nicolas%22">Boulanger, Nicolas</searchLink><br /><searchLink fieldCode="AR" term="%22Campoleoni%2C+Andrea%22">Campoleoni, Andrea</searchLink><br /><searchLink fieldCode="AR" term="%22Pekar%2C+Simon%22">Pekar, Simon</searchLink> )
Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2023 )
Array ( [Name] => Subset [Label] => Collection [Group] => HoldingsInfo [Data] => High Energy Physics - Theory )
Array ( [Name] => Subject [Label] => Subject Terms [Group] => Su [Data] => <searchLink fieldCode="DE" term="%22High+Energy+Physics+-+Theory%22">High Energy Physics - Theory</searchLink> )
Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => It was shown that the Lie algebra underlying higher-spin holography admits a contraction including a Poincar\'e subalgebra in any space-time dimensions. The associated curvatures, however, do not reproduce upon linearisation those that are usually employed to formulate the equations of motion of free massless particles in Minkowski space. We show that, despite this mismatch, the new linearised curvatures can also be used to describe massless higher-spin fields. This suggests a new way to build interacting higher-spin gauge theories in Minkowski space that may admit a holographic description.<br />Comment: 13 pages )
Array ( [Name] => TypeDocument [Label] => Document Type [Group] => TypDoc [Data] => Working Paper )
Array ( [Name] => URL [Label] => Access URL [Group] => URL [Data] => <link linkTarget="URL" linkTerm="http://arxiv.org/abs/2306.05367" linkWindow="_blank">http://arxiv.org/abs/2306.05367</link> )
Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsarx.2306.05367 )
RecordInfo Array ( [BibEntity] => Array ( [Subjects] => Array ( [0] => Array ( [SubjectFull] => High Energy Physics - Theory [Type] => general ) ) [Titles] => Array ( [0] => Array ( [TitleFull] => New higher-spin curvatures in flat space [Type] => main ) ) ) [BibRelationships] => Array ( [HasContributorRelationships] => Array ( [0] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Boulanger, Nicolas ) ) ) [1] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Campoleoni, Andrea ) ) ) [2] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Pekar, Simon ) ) ) ) [IsPartOfRelationships] => Array ( [0] => Array ( [BibEntity] => Array ( [Dates] => Array ( [0] => Array ( [D] => 08 [M] => 06 [Type] => published [Y] => 2023 ) ) ) ) ) ) )
IllustrationInfo