A note on large Kakeya sets

التفاصيل البيبلوغرافية
العنوان: A note on large Kakeya sets
المؤلفون: De Boeck, Maarten, Van de Voorde, Geertrui
سنة النشر: 2020
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Combinatorics, 05B25, 51E15, 51E20
الوصف: A Kakeya set $\mathcal{K}$ in an affine plane of order $q$ is the point set covered by a set $\mathcal{L}$ of $q+1$ pairwise non-parallel lines. Large Kakeya sets were studied by Dover and Mellinger; in [6] they showed that Kakeya sets with size at least $q^2-3q+9$ contain a large knot (a point of $\mathcal{K}$ lying on many lines of $\mathcal{L}$). In this paper, we improve on this result by showing that Kakeya set of size at least $\approx q^2-q\sqrt{q}+\frac{3}{2}q$ contain a large knot. Furthermore, we obtain a sharp result for planes of square order containing a Baer subplane.
Comment: To appear in Advances in Geometry
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2003.08480
رقم الانضمام: edsarx.2003.08480
قاعدة البيانات: arXiv
ResultId 1
Header edsarx
arXiv
edsarx.2003.08480
1008
3
Report
report
1007.64520263672
PLink https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.2003.08480&custid=s6537998&authtype=sso
FullText Array ( [Availability] => 0 )
Array ( [0] => Array ( [Url] => http://arxiv.org/abs/2003.08480 [Name] => EDS - Arxiv [Category] => fullText [Text] => View record in Arxiv [MouseOverText] => View record in Arxiv ) )
Items Array ( [Name] => Title [Label] => Title [Group] => Ti [Data] => A note on large Kakeya sets )
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22De+Boeck%2C+Maarten%22">De Boeck, Maarten</searchLink><br /><searchLink fieldCode="AR" term="%22Van+de+Voorde%2C+Geertrui%22">Van de Voorde, Geertrui</searchLink> )
Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2020 )
Array ( [Name] => Subset [Label] => Collection [Group] => HoldingsInfo [Data] => Mathematics )
Array ( [Name] => Subject [Label] => Subject Terms [Group] => Su [Data] => <searchLink fieldCode="DE" term="%22Mathematics+-+Combinatorics%22">Mathematics - Combinatorics</searchLink><br /><searchLink fieldCode="DE" term="%2205B25%2C+51E15%2C+51E20%22">05B25, 51E15, 51E20</searchLink> )
Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => A Kakeya set $\mathcal{K}$ in an affine plane of order $q$ is the point set covered by a set $\mathcal{L}$ of $q+1$ pairwise non-parallel lines. Large Kakeya sets were studied by Dover and Mellinger; in [6] they showed that Kakeya sets with size at least $q^2-3q+9$ contain a large knot (a point of $\mathcal{K}$ lying on many lines of $\mathcal{L}$). In this paper, we improve on this result by showing that Kakeya set of size at least $\approx q^2-q\sqrt{q}+\frac{3}{2}q$ contain a large knot. Furthermore, we obtain a sharp result for planes of square order containing a Baer subplane.<br />Comment: To appear in Advances in Geometry )
Array ( [Name] => TypeDocument [Label] => Document Type [Group] => TypDoc [Data] => Working Paper )
Array ( [Name] => URL [Label] => Access URL [Group] => URL [Data] => <link linkTarget="URL" linkTerm="http://arxiv.org/abs/2003.08480" linkWindow="_blank">http://arxiv.org/abs/2003.08480</link> )
Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsarx.2003.08480 )
RecordInfo Array ( [BibEntity] => Array ( [Subjects] => Array ( [0] => Array ( [SubjectFull] => Mathematics - Combinatorics [Type] => general ) [1] => Array ( [SubjectFull] => 05B25, 51E15, 51E20 [Type] => general ) ) [Titles] => Array ( [0] => Array ( [TitleFull] => A note on large Kakeya sets [Type] => main ) ) ) [BibRelationships] => Array ( [HasContributorRelationships] => Array ( [0] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => De Boeck, Maarten ) ) ) [1] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Van de Voorde, Geertrui ) ) ) ) [IsPartOfRelationships] => Array ( [0] => Array ( [BibEntity] => Array ( [Dates] => Array ( [0] => Array ( [D] => 18 [M] => 03 [Type] => published [Y] => 2020 ) ) ) ) ) ) )
IllustrationInfo