Report
A note on large Kakeya sets
العنوان: | A note on large Kakeya sets |
---|---|
المؤلفون: | De Boeck, Maarten, Van de Voorde, Geertrui |
سنة النشر: | 2020 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Combinatorics, 05B25, 51E15, 51E20 |
الوصف: | A Kakeya set $\mathcal{K}$ in an affine plane of order $q$ is the point set covered by a set $\mathcal{L}$ of $q+1$ pairwise non-parallel lines. Large Kakeya sets were studied by Dover and Mellinger; in [6] they showed that Kakeya sets with size at least $q^2-3q+9$ contain a large knot (a point of $\mathcal{K}$ lying on many lines of $\mathcal{L}$). In this paper, we improve on this result by showing that Kakeya set of size at least $\approx q^2-q\sqrt{q}+\frac{3}{2}q$ contain a large knot. Furthermore, we obtain a sharp result for planes of square order containing a Baer subplane. Comment: To appear in Advances in Geometry |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/2003.08480 |
رقم الانضمام: | edsarx.2003.08480 |
قاعدة البيانات: | arXiv |
ResultId |
1 |
---|---|
Header |
edsarx arXiv edsarx.2003.08480 1008 3 Report report 1007.64520263672 |
PLink |
https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.2003.08480&custid=s6537998&authtype=sso |
FullText |
Array
(
[Availability] => 0
)
Array ( [0] => Array ( [Url] => http://arxiv.org/abs/2003.08480 [Name] => EDS - Arxiv [Category] => fullText [Text] => View record in Arxiv [MouseOverText] => View record in Arxiv ) ) |
Items |
Array
(
[Name] => Title
[Label] => Title
[Group] => Ti
[Data] => A note on large Kakeya sets
)
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22De+Boeck%2C+Maarten%22">De Boeck, Maarten</searchLink><br /><searchLink fieldCode="AR" term="%22Van+de+Voorde%2C+Geertrui%22">Van de Voorde, Geertrui</searchLink> ) Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2020 ) Array ( [Name] => Subset [Label] => Collection [Group] => HoldingsInfo [Data] => Mathematics ) Array ( [Name] => Subject [Label] => Subject Terms [Group] => Su [Data] => <searchLink fieldCode="DE" term="%22Mathematics+-+Combinatorics%22">Mathematics - Combinatorics</searchLink><br /><searchLink fieldCode="DE" term="%2205B25%2C+51E15%2C+51E20%22">05B25, 51E15, 51E20</searchLink> ) Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => A Kakeya set $\mathcal{K}$ in an affine plane of order $q$ is the point set covered by a set $\mathcal{L}$ of $q+1$ pairwise non-parallel lines. Large Kakeya sets were studied by Dover and Mellinger; in [6] they showed that Kakeya sets with size at least $q^2-3q+9$ contain a large knot (a point of $\mathcal{K}$ lying on many lines of $\mathcal{L}$). In this paper, we improve on this result by showing that Kakeya set of size at least $\approx q^2-q\sqrt{q}+\frac{3}{2}q$ contain a large knot. Furthermore, we obtain a sharp result for planes of square order containing a Baer subplane.<br />Comment: To appear in Advances in Geometry ) Array ( [Name] => TypeDocument [Label] => Document Type [Group] => TypDoc [Data] => Working Paper ) Array ( [Name] => URL [Label] => Access URL [Group] => URL [Data] => <link linkTarget="URL" linkTerm="http://arxiv.org/abs/2003.08480" linkWindow="_blank">http://arxiv.org/abs/2003.08480</link> ) Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsarx.2003.08480 ) |
RecordInfo |
Array
(
[BibEntity] => Array
(
[Subjects] => Array
(
[0] => Array
(
[SubjectFull] => Mathematics - Combinatorics
[Type] => general
)
[1] => Array
(
[SubjectFull] => 05B25, 51E15, 51E20
[Type] => general
)
)
[Titles] => Array
(
[0] => Array
(
[TitleFull] => A note on large Kakeya sets
[Type] => main
)
)
)
[BibRelationships] => Array
(
[HasContributorRelationships] => Array
(
[0] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => De Boeck, Maarten
)
)
)
[1] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Van de Voorde, Geertrui
)
)
)
)
[IsPartOfRelationships] => Array
(
[0] => Array
(
[BibEntity] => Array
(
[Dates] => Array
(
[0] => Array
(
[D] => 18
[M] => 03
[Type] => published
[Y] => 2020
)
)
)
)
)
)
)
|
IllustrationInfo |