Relativistic Spin-0 Feshbach-Villars Equations for Polynomial Potentials

التفاصيل البيبلوغرافية
العنوان: Relativistic Spin-0 Feshbach-Villars Equations for Polynomial Potentials
المؤلفون: Motamedi, B. M., Shannon, T. N., Papp, Z.
سنة النشر: 2019
المجموعة: Mathematics
Mathematical Physics
مصطلحات موضوعية: Mathematical Physics
الوصف: We propose a solution method for studying relativistic spin-$0$ particles. We adopt the Feshbach-Villars formalism of the Klein-Gordon equation and express the formalism in an integral equation form. The integral equation is represented in the Coulomb-Sturmian basis. The corresponding Green's operator with Coulomb and linear confinement potential can be calculated as a matrix continued fraction. We consider Coulomb plus short range vector potential for bound and resonant states and linear confining scalar potentials for bound states. The continued fraction is naturally divergent at resonant state energies, but we made it convergent by an appropriate analytic continuation.
Comment: 5 pages
نوع الوثيقة: Working Paper
DOI: 10.1007/s00601-019-1533-9
URL الوصول: http://arxiv.org/abs/1907.06153
رقم الانضمام: edsarx.1907.06153
قاعدة البيانات: arXiv
ResultId 1
Header edsarx
arXiv
edsarx.1907.06153
994
3
Report
report
993.769287109375
PLink https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.1907.06153&custid=s6537998&authtype=sso
FullText Array ( [Availability] => 0 )
Array ( [0] => Array ( [Url] => http://arxiv.org/abs/1907.06153 [Name] => EDS - Arxiv [Category] => fullText [Text] => View record in Arxiv [MouseOverText] => View record in Arxiv ) )
Items Array ( [Name] => Title [Label] => Title [Group] => Ti [Data] => Relativistic Spin-0 Feshbach-Villars Equations for Polynomial Potentials )
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22Motamedi%2C+B%2E+M%2E%22">Motamedi, B. M.</searchLink><br /><searchLink fieldCode="AR" term="%22Shannon%2C+T%2E+N%2E%22">Shannon, T. N.</searchLink><br /><searchLink fieldCode="AR" term="%22Papp%2C+Z%2E%22">Papp, Z.</searchLink> )
Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2019 )
Array ( [Name] => Subset [Label] => Collection [Group] => HoldingsInfo [Data] => Mathematics<br />Mathematical Physics )
Array ( [Name] => Subject [Label] => Subject Terms [Group] => Su [Data] => <searchLink fieldCode="DE" term="%22Mathematical+Physics%22">Mathematical Physics</searchLink> )
Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => We propose a solution method for studying relativistic spin-$0$ particles. We adopt the Feshbach-Villars formalism of the Klein-Gordon equation and express the formalism in an integral equation form. The integral equation is represented in the Coulomb-Sturmian basis. The corresponding Green's operator with Coulomb and linear confinement potential can be calculated as a matrix continued fraction. We consider Coulomb plus short range vector potential for bound and resonant states and linear confining scalar potentials for bound states. The continued fraction is naturally divergent at resonant state energies, but we made it convergent by an appropriate analytic continuation.<br />Comment: 5 pages )
Array ( [Name] => TypeDocument [Label] => Document Type [Group] => TypDoc [Data] => Working Paper )
Array ( [Name] => DOI [Label] => DOI [Group] => ID [Data] => 10.1007/s00601-019-1533-9 )
Array ( [Name] => URL [Label] => Access URL [Group] => URL [Data] => <link linkTarget="URL" linkTerm="http://arxiv.org/abs/1907.06153" linkWindow="_blank">http://arxiv.org/abs/1907.06153</link> )
Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsarx.1907.06153 )
RecordInfo Array ( [BibEntity] => Array ( [Identifiers] => Array ( [0] => Array ( [Type] => doi [Value] => 10.1007/s00601-019-1533-9 ) ) [Subjects] => Array ( [0] => Array ( [SubjectFull] => Mathematical Physics [Type] => general ) ) [Titles] => Array ( [0] => Array ( [TitleFull] => Relativistic Spin-0 Feshbach-Villars Equations for Polynomial Potentials [Type] => main ) ) ) [BibRelationships] => Array ( [HasContributorRelationships] => Array ( [0] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Motamedi, B. M. ) ) ) [1] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Shannon, T. N. ) ) ) [2] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Papp, Z. ) ) ) ) [IsPartOfRelationships] => Array ( [0] => Array ( [BibEntity] => Array ( [Dates] => Array ( [0] => Array ( [D] => 13 [M] => 07 [Type] => published [Y] => 2019 ) ) ) ) ) ) )
IllustrationInfo