Private Machine Learning in TensorFlow using Secure Computation

التفاصيل البيبلوغرافية
العنوان: Private Machine Learning in TensorFlow using Secure Computation
المؤلفون: Dahl, Morten, Mancuso, Jason, Dupis, Yann, Decoste, Ben, Giraud, Morgan, Livingstone, Ian, Patriquin, Justin, Uhma, Gavin
سنة النشر: 2018
المجموعة: Computer Science
مصطلحات موضوعية: Computer Science - Cryptography and Security, Computer Science - Machine Learning
الوصف: We present a framework for experimenting with secure multi-party computation directly in TensorFlow. By doing so we benefit from several properties valuable to both researchers and practitioners, including tight integration with ordinary machine learning processes, existing optimizations for distributed computation in TensorFlow, high-level abstractions for expressing complex algorithms and protocols, and an expanded set of familiar tooling. We give an open source implementation of a state-of-the-art protocol and report on concrete benchmarks using typical models from private machine learning.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/1810.08130
رقم الانضمام: edsarx.1810.08130
قاعدة البيانات: arXiv