KSBA compactification of the moduli space of K3 surfaces with purely non-symplectic automorphism of order four

التفاصيل البيبلوغرافية
العنوان: KSBA compactification of the moduli space of K3 surfaces with purely non-symplectic automorphism of order four
المؤلفون: Moon, Han-Bom, Schaffler, Luca
سنة النشر: 2018
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Algebraic Geometry, 14J10, 14J28, 14D06
الوصف: We describe a compactification by KSBA stable pairs of the five-dimensional moduli space of K3 surfaces with purely non-symplectic automorphism of order four and $U(2)\oplus D_4^{\oplus2}$ lattice polarization. These K3 surfaces can be realized as the minimal resolution of the double cover of $\mathbb{P}^1\times\mathbb{P}^1$ branched along a specific $(4,4)$ curve. We show that, up to a finite group action, this stable pair compactification is isomorphic to Kirwan's partial desingularization of the GIT quotient $(\mathbb{P}^1)^8//\mathrm{SL}_2$ with the symmetric linearization.
Comment: 27 pages, 6 figures. Final version. To appear in Proceedings of the Edinburgh Mathematical Society
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/1809.05182
رقم الانضمام: edsarx.1809.05182
قاعدة البيانات: arXiv