Fluctuation theorems for discrete kinetic models of molecular motors

التفاصيل البيبلوغرافية
العنوان: Fluctuation theorems for discrete kinetic models of molecular motors
المؤلفون: Faggionato, Alessandra, Silvestri, Vittoria
سنة النشر: 2017
المجموعة: Mathematics
Condensed Matter
Mathematical Physics
مصطلحات موضوعية: Condensed Matter - Statistical Mechanics, Mathematical Physics, Mathematics - Probability
الوصف: Motivated by discrete kinetic models for non-cooperative molecular motors on periodic tracks, we consider random walks (also not Markov) on quasi one dimensional (1d) lattices, obtained by gluing several copies of a fundamental graph in a linear fashion. We show that, for a suitable class of quasi 1d lattices, the large deviation rate function associated to the position of the walker satisfies a Gallavotti-Cohen symmetry for any choice of the dynamical parameters defining the stochastic walk. This class includes the linear model considered in \cite{LLM1}. We also derive fluctuation theorems for the time-integrated cycle currents and discuss how the matrix approach of \cite{LLM1} can be extended to derive the above Gallavotti-Cohen symmetry for any Markov random walk on $\mathbb{Z}$ with periodic jump rates. Finally, we review in the present context some large deviation results of \cite{FS1} and give some specific examples with explicit computations.
Comment: Modified Appendix B, added figure 13, minor modifications. 27 pages, 16 figures
نوع الوثيقة: Working Paper
DOI: 10.1088/1742-5468/aa6731
URL الوصول: http://arxiv.org/abs/1701.01721
رقم الانضمام: edsarx.1701.01721
قاعدة البيانات: arXiv
الوصف
DOI:10.1088/1742-5468/aa6731