On the number of commutation classes of the longest element in the symmetric group

التفاصيل البيبلوغرافية
العنوان: On the number of commutation classes of the longest element in the symmetric group
المؤلفون: Denoncourt, Hugh, Ernst, Dana C., Story, Dustin
المصدر: Open Problems in Mathematics 4, 2016
سنة النشر: 2016
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - History and Overview, Mathematics - Combinatorics, 05E15 (Primary) 05A05, 05A15, 20F55, 05B45, 52C30, 52C40 (Secondary)
الوصف: Using the standard Coxeter presentation for the symmetric group $S_n$, two reduced expressions for the same group element are said to be commutation equivalent if we can obtain one expression from the other by applying a finite sequence of commutations. The resulting equivalence classes of reduced expressions are called commutation classes. How many commutation classes are there for the longest element in $S_n$?
Comment: First submission contained a typo, which has been fixed. 4 pages, 4 figures
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/1602.08328
رقم الانضمام: edsarx.1602.08328
قاعدة البيانات: arXiv