Report
On the number of commutation classes of the longest element in the symmetric group
العنوان: | On the number of commutation classes of the longest element in the symmetric group |
---|---|
المؤلفون: | Denoncourt, Hugh, Ernst, Dana C., Story, Dustin |
المصدر: | Open Problems in Mathematics 4, 2016 |
سنة النشر: | 2016 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - History and Overview, Mathematics - Combinatorics, 05E15 (Primary) 05A05, 05A15, 20F55, 05B45, 52C30, 52C40 (Secondary) |
الوصف: | Using the standard Coxeter presentation for the symmetric group $S_n$, two reduced expressions for the same group element are said to be commutation equivalent if we can obtain one expression from the other by applying a finite sequence of commutations. The resulting equivalence classes of reduced expressions are called commutation classes. How many commutation classes are there for the longest element in $S_n$? Comment: First submission contained a typo, which has been fixed. 4 pages, 4 figures |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/1602.08328 |
رقم الانضمام: | edsarx.1602.08328 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |