On normal forms of complex points of small $\mathcal{C}^{2}$-perturbations of real $4$-manifolds embedded in a complex $3$-manifold
العنوان: | On normal forms of complex points of small $\mathcal{C}^{2}$-perturbations of real $4$-manifolds embedded in a complex $3$-manifold |
---|---|
المؤلفون: | T. Starčič |
المصدر: | Complex variables and elliptic equations, vol. 66, no. 3, pp. 376-436, 2021. |
بيانات النشر: | arXiv, 2019. |
سنة النشر: | 2019 |
مصطلحات موضوعية: | Pure mathematics, complex points, kompleksne točke, 01 natural sciences, perturbacije, Matrix (mathematics), perturbations, FOS: Mathematics, CR manifolds, hkratna redukcija, 0101 mathematics, Complex Variables (math.CV), Mathematics, Numerical Analysis, graf zaprtja, Group (mathematics), Mathematics - Complex Variables, Applied Mathematics, 010102 general mathematics, normalna forma, udc:517.55:515.16, Action (physics), simultaneous reduction, 010101 applied mathematics, Computational Mathematics, closure graphs, CR mnogoterost, normal forms, Mathematics::Differential Geometry, Analysis, 3-manifold |
الوصف: | The purpose of this paper is to give a better understanding of complex points up to quadratic terms of real codimension $2$ submanifolds embedded in a complex $3$-manifold. We answer the question how a normal form of a pair of one arbitrary and one symmetric $2\times 2$ matrix with respect to a certain linear group action changes under arbitrarily small perturbations. This result is then applied to describe the quadratic part of normal forms of complex points of small $\mathcal{C}^{2}$-perturbations of real $4$-manifolds embedded in a complex $3$-manifold. |
وصف الملف: | application/pdf; text/url |
تدمد: | 1747-6933 |
DOI: | 10.48550/arxiv.1901.01644 |
URL الوصول: | https://explore.openaire.eu/search/publication?articleId=doi_dedup___::681a56c0b54d5af57842a83c2b57ac0f |
Rights: | OPEN |
رقم الانضمام: | edsair.doi.dedup.....681a56c0b54d5af57842a83c2b57ac0f |
قاعدة البيانات: | OpenAIRE |
ResultId |
1 |
---|---|
Header |
edsair OpenAIRE edsair.doi.dedup.....681a56c0b54d5af57842a83c2b57ac0f 820 3 unknown 819.664306640625 |
PLink |
https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsair&AN=edsair.doi.dedup.....681a56c0b54d5af57842a83c2b57ac0f&custid=s6537998&authtype=sso |
FullText |
Array
(
[Availability] => 0
)
Array ( [0] => Array ( [Url] => https://explore.openaire.eu/search/publication?articleId=doi_dedup___::681a56c0b54d5af57842a83c2b57ac0f# [Name] => EDS - OpenAIRE [Category] => fullText [Text] => View record in OpenAIRE [MouseOverText] => View record in OpenAIRE ) ) |
Items |
Array
(
[Name] => Title
[Label] => Title
[Group] => Ti
[Data] => On normal forms of complex points of small $\mathcal{C}^{2}$-perturbations of real $4$-manifolds embedded in a complex $3$-manifold
)
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22T%2E+Starčič%22">T. Starčič</searchLink> ) Array ( [Name] => TitleSource [Label] => Source [Group] => Src [Data] => Complex variables and elliptic equations, vol. 66, no. 3, pp. 376-436, 2021. ) Array ( [Name] => Publisher [Label] => Publisher Information [Group] => PubInfo [Data] => arXiv, 2019. ) Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2019 ) Array ( [Name] => Subject [Label] => Subject Terms [Group] => Su [Data] => <searchLink fieldCode="DE" term="%22Pure+mathematics%22">Pure mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22complex+points%22">complex points</searchLink><br /><searchLink fieldCode="DE" term="%22kompleksne+točke%22">kompleksne točke</searchLink><br /><searchLink fieldCode="DE" term="%2201+natural+sciences%22">01 natural sciences</searchLink><br /><searchLink fieldCode="DE" term="%22perturbacije%22">perturbacije</searchLink><br /><searchLink fieldCode="DE" term="%22Matrix+%28mathematics%29%22">Matrix (mathematics)</searchLink><br /><searchLink fieldCode="DE" term="%22perturbations%22">perturbations</searchLink><br /><searchLink fieldCode="DE" term="%22FOS%3A+Mathematics%22">FOS: Mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22CR+manifolds%22">CR manifolds</searchLink><br /><searchLink fieldCode="DE" term="%22hkratna+redukcija%22">hkratna redukcija</searchLink><br /><searchLink fieldCode="DE" term="%220101+mathematics%22">0101 mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22Complex+Variables+%28math%2ECV%29%22">Complex Variables (math.CV)</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematics%22">Mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22Numerical+Analysis%22">Numerical Analysis</searchLink><br /><searchLink fieldCode="DE" term="%22graf+zaprtja%22">graf zaprtja</searchLink><br /><searchLink fieldCode="DE" term="%22Group+%28mathematics%29%22">Group (mathematics)</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematics+-+Complex+Variables%22">Mathematics - Complex Variables</searchLink><br /><searchLink fieldCode="DE" term="%22Applied+Mathematics%22">Applied Mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22010102+general+mathematics%22">010102 general mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22normalna+forma%22">normalna forma</searchLink><br /><searchLink fieldCode="DE" term="%22udc%3A517%2E55%3A515%2E16%22">udc:517.55:515.16</searchLink><br /><searchLink fieldCode="DE" term="%22Action+%28physics%29%22">Action (physics)</searchLink><br /><searchLink fieldCode="DE" term="%22simultaneous+reduction%22">simultaneous reduction</searchLink><br /><searchLink fieldCode="DE" term="%22010101+applied+mathematics%22">010101 applied mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22Computational+Mathematics%22">Computational Mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22closure+graphs%22">closure graphs</searchLink><br /><searchLink fieldCode="DE" term="%22CR+mnogoterost%22">CR mnogoterost</searchLink><br /><searchLink fieldCode="DE" term="%22normal+forms%22">normal forms</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematics%3A%3ADifferential+Geometry%22">Mathematics::Differential Geometry</searchLink><br /><searchLink fieldCode="DE" term="%22Analysis%22">Analysis</searchLink><br /><searchLink fieldCode="DE" term="%223-manifold%22">3-manifold</searchLink> ) Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => The purpose of this paper is to give a better understanding of complex points up to quadratic terms of real codimension $2$ submanifolds embedded in a complex $3$-manifold. We answer the question how a normal form of a pair of one arbitrary and one symmetric $2\times 2$ matrix with respect to a certain linear group action changes under arbitrarily small perturbations. This result is then applied to describe the quadratic part of normal forms of complex points of small $\mathcal{C}^{2}$-perturbations of real $4$-manifolds embedded in a complex $3$-manifold. ) Array ( [Name] => Format [Label] => File Description [Group] => SrcInfo [Data] => application/pdf; text/url ) Array ( [Name] => ISSN [Label] => ISSN [Group] => ISSN [Data] => 1747-6933 ) Array ( [Name] => DOI [Label] => DOI [Group] => ID [Data] => 10.48550/arxiv.1901.01644 ) Array ( [Name] => URL [Label] => Access URL [Group] => URL [Data] => <link linkTarget="URL" linkTerm="https://explore.openaire.eu/search/publication?articleId=doi_dedup___::681a56c0b54d5af57842a83c2b57ac0f" linkWindow="_blank">https://explore.openaire.eu/search/publication?articleId=doi_dedup___::681a56c0b54d5af57842a83c2b57ac0f</link> ) Array ( [Name] => Copyright [Label] => Rights [Group] => Cpyrght [Data] => OPEN ) Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsair.doi.dedup.....681a56c0b54d5af57842a83c2b57ac0f ) |
RecordInfo |
Array
(
[BibEntity] => Array
(
[Identifiers] => Array
(
[0] => Array
(
[Type] => doi
[Value] => 10.48550/arxiv.1901.01644
)
)
[Languages] => Array
(
[0] => Array
(
[Text] => Undetermined
)
)
[Subjects] => Array
(
[0] => Array
(
[SubjectFull] => Pure mathematics
[Type] => general
)
[1] => Array
(
[SubjectFull] => complex points
[Type] => general
)
[2] => Array
(
[SubjectFull] => kompleksne točke
[Type] => general
)
[3] => Array
(
[SubjectFull] => 01 natural sciences
[Type] => general
)
[4] => Array
(
[SubjectFull] => perturbacije
[Type] => general
)
[5] => Array
(
[SubjectFull] => Matrix (mathematics)
[Type] => general
)
[6] => Array
(
[SubjectFull] => perturbations
[Type] => general
)
[7] => Array
(
[SubjectFull] => FOS: Mathematics
[Type] => general
)
[8] => Array
(
[SubjectFull] => CR manifolds
[Type] => general
)
[9] => Array
(
[SubjectFull] => hkratna redukcija
[Type] => general
)
[10] => Array
(
[SubjectFull] => 0101 mathematics
[Type] => general
)
[11] => Array
(
[SubjectFull] => Complex Variables (math.CV)
[Type] => general
)
[12] => Array
(
[SubjectFull] => Mathematics
[Type] => general
)
[13] => Array
(
[SubjectFull] => Numerical Analysis
[Type] => general
)
[14] => Array
(
[SubjectFull] => graf zaprtja
[Type] => general
)
[15] => Array
(
[SubjectFull] => Group (mathematics)
[Type] => general
)
[16] => Array
(
[SubjectFull] => Mathematics - Complex Variables
[Type] => general
)
[17] => Array
(
[SubjectFull] => Applied Mathematics
[Type] => general
)
[18] => Array
(
[SubjectFull] => 010102 general mathematics
[Type] => general
)
[19] => Array
(
[SubjectFull] => normalna forma
[Type] => general
)
[20] => Array
(
[SubjectFull] => udc:517.55:515.16
[Type] => general
)
[21] => Array
(
[SubjectFull] => Action (physics)
[Type] => general
)
[22] => Array
(
[SubjectFull] => simultaneous reduction
[Type] => general
)
[23] => Array
(
[SubjectFull] => 010101 applied mathematics
[Type] => general
)
[24] => Array
(
[SubjectFull] => Computational Mathematics
[Type] => general
)
[25] => Array
(
[SubjectFull] => closure graphs
[Type] => general
)
[26] => Array
(
[SubjectFull] => CR mnogoterost
[Type] => general
)
[27] => Array
(
[SubjectFull] => normal forms
[Type] => general
)
[28] => Array
(
[SubjectFull] => Mathematics::Differential Geometry
[Type] => general
)
[29] => Array
(
[SubjectFull] => Analysis
[Type] => general
)
[30] => Array
(
[SubjectFull] => 3-manifold
[Type] => general
)
)
[Titles] => Array
(
[0] => Array
(
[TitleFull] => On normal forms of complex points of small $\mathcal{C}^{2}$-perturbations of real $4$-manifolds embedded in a complex $3$-manifold
[Type] => main
)
)
)
[BibRelationships] => Array
(
[HasContributorRelationships] => Array
(
[0] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => T. Starčič
)
)
)
)
[IsPartOfRelationships] => Array
(
[0] => Array
(
[BibEntity] => Array
(
[Dates] => Array
(
[0] => Array
(
[D] => 01
[M] => 01
[Type] => published
[Y] => 2019
)
)
[Identifiers] => Array
(
[0] => Array
(
[Type] => issn-print
[Value] => 17476933
)
[1] => Array
(
[Type] => issn-locals
[Value] => edsair
)
[2] => Array
(
[Type] => issn-locals
[Value] => edsairFT
)
)
)
)
)
)
)
|
IllustrationInfo |