On normal forms of complex points of small $\mathcal{C}^{2}$-perturbations of real $4$-manifolds embedded in a complex $3$-manifold

التفاصيل البيبلوغرافية
العنوان: On normal forms of complex points of small $\mathcal{C}^{2}$-perturbations of real $4$-manifolds embedded in a complex $3$-manifold
المؤلفون: T. Starčič
المصدر: Complex variables and elliptic equations, vol. 66, no. 3, pp. 376-436, 2021.
بيانات النشر: arXiv, 2019.
سنة النشر: 2019
مصطلحات موضوعية: Pure mathematics, complex points, kompleksne točke, 01 natural sciences, perturbacije, Matrix (mathematics), perturbations, FOS: Mathematics, CR manifolds, hkratna redukcija, 0101 mathematics, Complex Variables (math.CV), Mathematics, Numerical Analysis, graf zaprtja, Group (mathematics), Mathematics - Complex Variables, Applied Mathematics, 010102 general mathematics, normalna forma, udc:517.55:515.16, Action (physics), simultaneous reduction, 010101 applied mathematics, Computational Mathematics, closure graphs, CR mnogoterost, normal forms, Mathematics::Differential Geometry, Analysis, 3-manifold
الوصف: The purpose of this paper is to give a better understanding of complex points up to quadratic terms of real codimension $2$ submanifolds embedded in a complex $3$-manifold. We answer the question how a normal form of a pair of one arbitrary and one symmetric $2\times 2$ matrix with respect to a certain linear group action changes under arbitrarily small perturbations. This result is then applied to describe the quadratic part of normal forms of complex points of small $\mathcal{C}^{2}$-perturbations of real $4$-manifolds embedded in a complex $3$-manifold.
وصف الملف: application/pdf; text/url
تدمد: 1747-6933
DOI: 10.48550/arxiv.1901.01644
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::681a56c0b54d5af57842a83c2b57ac0f
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....681a56c0b54d5af57842a83c2b57ac0f
قاعدة البيانات: OpenAIRE
ResultId 1
Header edsair
OpenAIRE
edsair.doi.dedup.....681a56c0b54d5af57842a83c2b57ac0f
820
3

unknown
819.664306640625
PLink https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsair&AN=edsair.doi.dedup.....681a56c0b54d5af57842a83c2b57ac0f&custid=s6537998&authtype=sso
FullText Array ( [Availability] => 0 )
Array ( [0] => Array ( [Url] => https://explore.openaire.eu/search/publication?articleId=doi_dedup___::681a56c0b54d5af57842a83c2b57ac0f# [Name] => EDS - OpenAIRE [Category] => fullText [Text] => View record in OpenAIRE [MouseOverText] => View record in OpenAIRE ) )
Items Array ( [Name] => Title [Label] => Title [Group] => Ti [Data] => On normal forms of complex points of small $\mathcal{C}^{2}$-perturbations of real $4$-manifolds embedded in a complex $3$-manifold )
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22T%2E+Starčič%22">T. Starčič</searchLink> )
Array ( [Name] => TitleSource [Label] => Source [Group] => Src [Data] => Complex variables and elliptic equations, vol. 66, no. 3, pp. 376-436, 2021. )
Array ( [Name] => Publisher [Label] => Publisher Information [Group] => PubInfo [Data] => arXiv, 2019. )
Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2019 )
Array ( [Name] => Subject [Label] => Subject Terms [Group] => Su [Data] => <searchLink fieldCode="DE" term="%22Pure+mathematics%22">Pure mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22complex+points%22">complex points</searchLink><br /><searchLink fieldCode="DE" term="%22kompleksne+točke%22">kompleksne točke</searchLink><br /><searchLink fieldCode="DE" term="%2201+natural+sciences%22">01 natural sciences</searchLink><br /><searchLink fieldCode="DE" term="%22perturbacije%22">perturbacije</searchLink><br /><searchLink fieldCode="DE" term="%22Matrix+%28mathematics%29%22">Matrix (mathematics)</searchLink><br /><searchLink fieldCode="DE" term="%22perturbations%22">perturbations</searchLink><br /><searchLink fieldCode="DE" term="%22FOS%3A+Mathematics%22">FOS: Mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22CR+manifolds%22">CR manifolds</searchLink><br /><searchLink fieldCode="DE" term="%22hkratna+redukcija%22">hkratna redukcija</searchLink><br /><searchLink fieldCode="DE" term="%220101+mathematics%22">0101 mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22Complex+Variables+%28math%2ECV%29%22">Complex Variables (math.CV)</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematics%22">Mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22Numerical+Analysis%22">Numerical Analysis</searchLink><br /><searchLink fieldCode="DE" term="%22graf+zaprtja%22">graf zaprtja</searchLink><br /><searchLink fieldCode="DE" term="%22Group+%28mathematics%29%22">Group (mathematics)</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematics+-+Complex+Variables%22">Mathematics - Complex Variables</searchLink><br /><searchLink fieldCode="DE" term="%22Applied+Mathematics%22">Applied Mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22010102+general+mathematics%22">010102 general mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22normalna+forma%22">normalna forma</searchLink><br /><searchLink fieldCode="DE" term="%22udc%3A517%2E55%3A515%2E16%22">udc:517.55:515.16</searchLink><br /><searchLink fieldCode="DE" term="%22Action+%28physics%29%22">Action (physics)</searchLink><br /><searchLink fieldCode="DE" term="%22simultaneous+reduction%22">simultaneous reduction</searchLink><br /><searchLink fieldCode="DE" term="%22010101+applied+mathematics%22">010101 applied mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22Computational+Mathematics%22">Computational Mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22closure+graphs%22">closure graphs</searchLink><br /><searchLink fieldCode="DE" term="%22CR+mnogoterost%22">CR mnogoterost</searchLink><br /><searchLink fieldCode="DE" term="%22normal+forms%22">normal forms</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematics%3A%3ADifferential+Geometry%22">Mathematics::Differential Geometry</searchLink><br /><searchLink fieldCode="DE" term="%22Analysis%22">Analysis</searchLink><br /><searchLink fieldCode="DE" term="%223-manifold%22">3-manifold</searchLink> )
Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => The purpose of this paper is to give a better understanding of complex points up to quadratic terms of real codimension $2$ submanifolds embedded in a complex $3$-manifold. We answer the question how a normal form of a pair of one arbitrary and one symmetric $2\times 2$ matrix with respect to a certain linear group action changes under arbitrarily small perturbations. This result is then applied to describe the quadratic part of normal forms of complex points of small $\mathcal{C}^{2}$-perturbations of real $4$-manifolds embedded in a complex $3$-manifold. )
Array ( [Name] => Format [Label] => File Description [Group] => SrcInfo [Data] => application/pdf; text/url )
Array ( [Name] => ISSN [Label] => ISSN [Group] => ISSN [Data] => 1747-6933 )
Array ( [Name] => DOI [Label] => DOI [Group] => ID [Data] => 10.48550/arxiv.1901.01644 )
Array ( [Name] => URL [Label] => Access URL [Group] => URL [Data] => <link linkTarget="URL" linkTerm="https://explore.openaire.eu/search/publication?articleId=doi_dedup___::681a56c0b54d5af57842a83c2b57ac0f" linkWindow="_blank">https://explore.openaire.eu/search/publication?articleId=doi_dedup___::681a56c0b54d5af57842a83c2b57ac0f</link> )
Array ( [Name] => Copyright [Label] => Rights [Group] => Cpyrght [Data] => OPEN )
Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsair.doi.dedup.....681a56c0b54d5af57842a83c2b57ac0f )
RecordInfo Array ( [BibEntity] => Array ( [Identifiers] => Array ( [0] => Array ( [Type] => doi [Value] => 10.48550/arxiv.1901.01644 ) ) [Languages] => Array ( [0] => Array ( [Text] => Undetermined ) ) [Subjects] => Array ( [0] => Array ( [SubjectFull] => Pure mathematics [Type] => general ) [1] => Array ( [SubjectFull] => complex points [Type] => general ) [2] => Array ( [SubjectFull] => kompleksne točke [Type] => general ) [3] => Array ( [SubjectFull] => 01 natural sciences [Type] => general ) [4] => Array ( [SubjectFull] => perturbacije [Type] => general ) [5] => Array ( [SubjectFull] => Matrix (mathematics) [Type] => general ) [6] => Array ( [SubjectFull] => perturbations [Type] => general ) [7] => Array ( [SubjectFull] => FOS: Mathematics [Type] => general ) [8] => Array ( [SubjectFull] => CR manifolds [Type] => general ) [9] => Array ( [SubjectFull] => hkratna redukcija [Type] => general ) [10] => Array ( [SubjectFull] => 0101 mathematics [Type] => general ) [11] => Array ( [SubjectFull] => Complex Variables (math.CV) [Type] => general ) [12] => Array ( [SubjectFull] => Mathematics [Type] => general ) [13] => Array ( [SubjectFull] => Numerical Analysis [Type] => general ) [14] => Array ( [SubjectFull] => graf zaprtja [Type] => general ) [15] => Array ( [SubjectFull] => Group (mathematics) [Type] => general ) [16] => Array ( [SubjectFull] => Mathematics - Complex Variables [Type] => general ) [17] => Array ( [SubjectFull] => Applied Mathematics [Type] => general ) [18] => Array ( [SubjectFull] => 010102 general mathematics [Type] => general ) [19] => Array ( [SubjectFull] => normalna forma [Type] => general ) [20] => Array ( [SubjectFull] => udc:517.55:515.16 [Type] => general ) [21] => Array ( [SubjectFull] => Action (physics) [Type] => general ) [22] => Array ( [SubjectFull] => simultaneous reduction [Type] => general ) [23] => Array ( [SubjectFull] => 010101 applied mathematics [Type] => general ) [24] => Array ( [SubjectFull] => Computational Mathematics [Type] => general ) [25] => Array ( [SubjectFull] => closure graphs [Type] => general ) [26] => Array ( [SubjectFull] => CR mnogoterost [Type] => general ) [27] => Array ( [SubjectFull] => normal forms [Type] => general ) [28] => Array ( [SubjectFull] => Mathematics::Differential Geometry [Type] => general ) [29] => Array ( [SubjectFull] => Analysis [Type] => general ) [30] => Array ( [SubjectFull] => 3-manifold [Type] => general ) ) [Titles] => Array ( [0] => Array ( [TitleFull] => On normal forms of complex points of small $\mathcal{C}^{2}$-perturbations of real $4$-manifolds embedded in a complex $3$-manifold [Type] => main ) ) ) [BibRelationships] => Array ( [HasContributorRelationships] => Array ( [0] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => T. Starčič ) ) ) ) [IsPartOfRelationships] => Array ( [0] => Array ( [BibEntity] => Array ( [Dates] => Array ( [0] => Array ( [D] => 01 [M] => 01 [Type] => published [Y] => 2019 ) ) [Identifiers] => Array ( [0] => Array ( [Type] => issn-print [Value] => 17476933 ) [1] => Array ( [Type] => issn-locals [Value] => edsair ) [2] => Array ( [Type] => issn-locals [Value] => edsairFT ) ) ) ) ) ) )
IllustrationInfo