An infinite dimensional Duffing-like evolution equation with linear dissipation and an asymptotically small source term

التفاصيل البيبلوغرافية
العنوان: An infinite dimensional Duffing-like evolution equation with linear dissipation and an asymptotically small source term
المؤلفون: Massimo Gobbino, Marina Ghisi, Alain Haraux
المساهمون: Dipartimento di Matematica (dm.unipi), Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
بيانات النشر: HAL CCSD, 2017.
سنة النشر: 2017
مصطلحات موضوعية: Economics, [MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS], Dynamical Systems (math.DS), [MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA], 01 natural sciences, 35B40, 35L75, 35L90, Econometrics and Finance (all)2001 Economics, Asymptotic behavior, Dissipative hyperbolic equation, Duffing equation, Magneto-elastic oscillations, Analysis, Engineering (all), Economics, Econometrics and Finance (all)2001 Economics, Econometrics and Finance (miscellaneous), Computational Mathematics, Applied Mathematics, Mathematics - Analysis of PDEs, FOS: Mathematics, [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP], asymptotic behavior, 0101 mathematics, Mathematics - Dynamical Systems, Physics, magneto-elastic oscillations, 010102 general mathematics, Mathematical analysis, General Engineering, General Medicine, Sense (electronics), Dissipation, Magnetic field, Term (time), Functional Analysis (math.FA), 010101 applied mathematics, Mathematics - Functional Analysis, Nonlinear system, Transversal (combinatorics), Bounded function, Econometrics and Finance (miscellaneous), dissipative hyperbolic equation, General Economics, Econometrics and Finance, Beam (structure), Analysis of PDEs (math.AP)
الوصف: We consider an abstract nonlinear second order evolution equation, inspired by some models for damped oscillations of a beam subject to external loads or magnetic fields, and shaken by a transversal force. When there is no external force, the system has three stationary positions, two stable and one unstable, and all solutions are asymptotic for t large to one of these stationary solutions. We show that this pattern extends to the case where the external force is bounded and small enough, in the sense that solutions can exhibit only three different asymptotic behaviors.
اللغة: English
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3cf010e12fee03fe1ca803612df363b2
https://hal.sorbonne-universite.fr/hal-01618055/file/Duffing-ter.pdf
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....3cf010e12fee03fe1ca803612df363b2
قاعدة البيانات: OpenAIRE