Importance of Water Structure and Catalyst–Electrolyte Interface on the Design of Water Splitting Catalysts
العنوان: | Importance of Water Structure and Catalyst–Electrolyte Interface on the Design of Water Splitting Catalysts |
---|---|
المؤلفون: | Paul E. Pearce, Ronguang Zhang, Yan Duan, Nicolas Dubouis, Alexis Grimaud, Thomas Marchandier |
المساهمون: | Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) |
المصدر: | Chemistry of Materials Chemistry of Materials, American Chemical Society, 2019, 31 (20), pp.8248-8259. ⟨10.1021/acs.chemmater.9b02318⟩ |
بيانات النشر: | American Chemical Society (ACS), 2019. |
سنة النشر: | 2019 |
مصطلحات موضوعية: | Materials science, Interface (Java), General Chemical Engineering, 02 engineering and technology, General Chemistry, Electrolyte, 010402 general chemistry, 021001 nanoscience & nanotechnology, 01 natural sciences, 7. Clean energy, 0104 chemical sciences, Catalysis, Chemical engineering, 13. Climate action, Materials Chemistry, [CHIM]Chemical Sciences, Water splitting, 0210 nano-technology, Renewable energy storage, Hydrogen production |
الوصف: | International audience; Hydrogen production technologies have attracted intensive attention for their potential to cope with future challenges related to renewable energy storage and conversion. However, the significant kinetic barriers associated with the oxygen evolution reaction (OER), one of the two half reactions at the heart of water electrolysis, greatly hinder the sustainable production of hydrogen at a large scale. A wide variety of materials have thus been designed and explored as OER catalysts. In this perspective, we briefly review the development of Ir-based OER catalysts in acidic conditions and discuss the limitations of a design strategy solely based on the physical and electronic properties of OER catalysts, highlighting the importance of understanding the catalyst-electrolyte interface which affects the stability and activity of the catalyst. We then share our perspective on a group of crystalline, bulk protonated iridates obtained via cation exchange in acidic solutions to be used as promising stable and active OER catalysts. Finally, we discuss the advances recently made in understanding the impact of the active sites environment on the OER kinetics, emphasizing the influence of the water structure and/or solvation properties of ions in the electrolyte. We highlight the importance of developing a better understanding of these influencing factors and incorporate them into our design of OER catalysts with enhanced properties. |
تدمد: | 1520-5002 0897-4756 |
DOI: | 10.1021/acs.chemmater.9b02318 |
DOI: | 10.1021/acs.chemmater.9b02318⟩ |
URL الوصول: | https://explore.openaire.eu/search/publication?articleId=doi_dedup___::250bee2179a0bb0c84d7e65152f0107a https://doi.org/10.1021/acs.chemmater.9b02318 |
Rights: | OPEN |
رقم الانضمام: | edsair.doi.dedup.....250bee2179a0bb0c84d7e65152f0107a |
قاعدة البيانات: | OpenAIRE |
كن أول من يترك تعليقا!