Approximately linear INGARCH models for spatio-temporal counts
العنوان: | Approximately linear INGARCH models for spatio-temporal counts |
---|---|
المؤلفون: | Malte Jahn, Christian H Weiß, Hee-Young Kim |
المصدر: | Journal of the Royal Statistical Society Series C: Applied Statistics. 72:476-497 |
بيانات النشر: | Oxford University Press (OUP), 2023. |
سنة النشر: | 2023 |
مصطلحات موضوعية: | Statistics and Probability, Statistics, Probability and Uncertainty |
الوصف: | Existing integer-valued generalised autoregressive conditional heteroskedasticity (INGARCH) models for spatio-temporal counts do not allow for negative parameter and autocorrelation values. Using approximately linear INGARCH models, the unified and flexible spatio-temporal (B)INGARCH framework for modelling unbounded (bounded) counts is proposed. These models combine negative dependencies with kinds of a long memory. They are easily adapted to special marginal features or cross-dependencies: When modelling precipitation data (counts of rainy hours), we account for zero-inflation, while for cloud-coverage data (counts of okta), we deal with missing data and additional cross-correlation. A copula related to the spatial error model shows an appealing performance. |
تدمد: | 1467-9876 0035-9254 |
DOI: | 10.1093/jrsssc/qlad018 |
URL الوصول: | https://explore.openaire.eu/search/publication?articleId=doi_________::60f99abbbcd2957550613d020f9822c4 https://doi.org/10.1093/jrsssc/qlad018 |
Rights: | OPEN |
رقم الانضمام: | edsair.doi...........60f99abbbcd2957550613d020f9822c4 |
قاعدة البيانات: | OpenAIRE |
كن أول من يترك تعليقا!