Approximately linear INGARCH models for spatio-temporal counts

التفاصيل البيبلوغرافية
العنوان: Approximately linear INGARCH models for spatio-temporal counts
المؤلفون: Malte Jahn, Christian H Weiß, Hee-Young Kim
المصدر: Journal of the Royal Statistical Society Series C: Applied Statistics. 72:476-497
بيانات النشر: Oxford University Press (OUP), 2023.
سنة النشر: 2023
مصطلحات موضوعية: Statistics and Probability, Statistics, Probability and Uncertainty
الوصف: Existing integer-valued generalised autoregressive conditional heteroskedasticity (INGARCH) models for spatio-temporal counts do not allow for negative parameter and autocorrelation values. Using approximately linear INGARCH models, the unified and flexible spatio-temporal (B)INGARCH framework for modelling unbounded (bounded) counts is proposed. These models combine negative dependencies with kinds of a long memory. They are easily adapted to special marginal features or cross-dependencies: When modelling precipitation data (counts of rainy hours), we account for zero-inflation, while for cloud-coverage data (counts of okta), we deal with missing data and additional cross-correlation. A copula related to the spatial error model shows an appealing performance.
تدمد: 1467-9876
0035-9254
DOI: 10.1093/jrsssc/qlad018
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::60f99abbbcd2957550613d020f9822c4
https://doi.org/10.1093/jrsssc/qlad018
Rights: OPEN
رقم الانضمام: edsair.doi...........60f99abbbcd2957550613d020f9822c4
قاعدة البيانات: OpenAIRE