يعرض 1 - 6 نتائج من 6 نتيجة بحث عن '"verosimilitud perfil"', وقت الاستعلام: 0.36s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: Montoya, José A.

    المصدر: Revista de la Facultad de Ciencias; Vol. 11 No. 2 (2022): Special Issue: Flat Likelihoods; 8-24 ; Revista de la Facultad de Ciencias; Vol. 11 Núm. 2 (2022): Número Especial: Verosimilitudes Planas; 8-24 ; 2357-5549 ; 0121-747X

    وصف الملف: application/pdf

    Relation: https://revistas.unal.edu.co/index.php/rfc/article/view/97888/85205; Aitkin, M. & Stasinopoulos, M. (1989). Likelihood analysis of a binomial sample size problem. Contributions to Probability and Statistics (pp. 399-411). Springer. New York.; Barndorff-Nielsen, O. E. & Cox, D. R. (1994). Inference and asymptotics. Chapman & Hall/CRC. Boca Raton.; Berger, J. O., Liseo, B. & Wolpert, R. L. (1999). Integrated likelihood methods for eliminating nuisance parameters. Statistical Science, 14(1), 1-28.; Breusch, T. S., Robertson, J. C. & Welsh, A. H. (1997). The emperor's new clothes: a critique of the multivariate t regression model. Statistica Neerlandica, 51(3), 269-286.; Carroll, R. J. & Lombard, F. (1985). A note on N estimators for the binomial distribution. Journal of the American Statistical Association, 80(390), 423-426.; Casella, G. (1986). Stabilizing binomial n estimators. Journal of the American Statistical Association, 81(393), 172-175.; Catchpole, E. A.& Morgan, B. J. (1997). Detecting parameter redundancy. Biometrika, 84(1), 187-196.; Cheng, R. C. H. & Iles, T. C. (1990). Embedded models in three-parameter distributions and their estimation. Journal of the Royal Statistical Society. Series B (Methodological), 52(1), 135-149.; Cole, S. R., Chu, H. & Greenland, S. (2013). Maximum likelihood, profile likelihood, and penalized likelihood: a primer. American Journal of Epidemiology, 179(2), 252-260.; DasGupta, A. & Rubin, H. (2005). Estimation of binomial parameters when both n, p are unknown. Journal of Statistical Planning and Inference, 130(1-2), 391-404.; Draper, N.; Guttman, I. (1971), Bayesian estimation of the binomial parameter. Technometrics, 13(3), 667-673.; El Adlouni, S., Ouarda, T. B., Zhang, X., Roy, R. & Bobée, B. (2007). Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resources Research, 43(3), W03410.; Farcomeni, A. & Tardella, L. (2012). Identifiability and inferential issues in capture-recapture experiments with heterogeneous detection probabilities. Electronic Journal of Statistics, 6, 2602-2626.; Fisher, R. A. (1941). The negative binomial distribution. Annals of Eugenics, 11(1), 182-187.; Frery, A. C., Cribari-Neto, F.& De Souza, M. O. (2004). Analysis of minute features in speckled imagery with maximum likelihood estimation. EURASIP Journal on Advances in Signal Processing, 2004(16), 2476-2491.; Ghosh, M., Datta, G. S., Kim, D. & Sweeting, T. J. (2006). Likelihood-based inference for the ratios of regression coeficients in linear models. Annals of the Institute of Statistical Mathematics, 58(3), 457-473.; Gupta, A. K., Nguyen, T. T. &Wang, Y. (1999). On maximum likelihood estimation of the binomial parameter n. Canadian Journal of Statistics, 27(3), 599-606.; Hall, P. (1994). On the erratic behavior of estimators of N in the binomial N, p distribution. Journal of the American Statistical Association, 89(425), 344-352.; Harter, H. L. & Moore, A. H. (1966). Local-maximum-likelihood estimation of the parameters of three-parameter lognormal populations from complete and censored samples. Journal of the American Statistical Association, 61(315), 842-851.; Kahn, W. D. (1987). A cautionary note for Bayesian estimation of the binomial parameter n. The American Statistician, 41(1), 38-40.; Kalbfleisch, J. G. (1985). Probability and Statistical Inference, Vol. 2. Springer-Verlag. New York.; Kreutz, C., Raue, A., Kaschek, D. & Timmer, J. (2013). Prole likelihood in systems biology. The FEBS Journal, 280(11), 2564-2571.; Li, R. & Sudjianto, A. (2005). Analysis of computer experiments using penalized likelihood in Gaussian Kriging models. Technometrics, 47(2), 111-120.; Lima, V. M. & Cribari-Neto, F. (2019). Penalized maximum likelihood estimation in the modified extended Weibull distribution. Communications in Statistics-Simulation and Computation, 48(2), 334-349.; Lindsey, J. K. (1996). Parametric statistical inference. Oxford University Press. New York.; Liu, S., Wu, H. & Meeker, W. Q. (2015). Understanding and addressing the unbounded likelihood problem. The American Statistician, 69(3), 191-200.; Martins, E. S. & Stedinger, J. R. (2000). Generalized maximum-likelihood generalized extreme value quantile estimators for hydrologic data. Water Resources Research, 36(3), 737-744.; Martins, E. S. & Stedinger, J. R. (2001). Generalized maximum likelihood Pareto-Poisson estimators for partial duration series. Water Resources Research, 37(10), 2551-2557.; Montoya, J. A., Díaz-Francés, E. & Sprott, D. A. (2009). On a criticism of the progile likelihood function. Statistical Papers, 50(1), 195-202.; Moran, P. A. P. (1951). A mathematical theory of animal trapping. Biometrika, 38(3-4), 307-311.; Murphy, S. A. & Van Der Vaart, A. W. (2000). On profile likelihood. Journal of the American Statistical Association, 95(450), 449-465.; Olkin, I., Petkau, A. J. & Zidek, J. V. (1981). A comparison of n estimators for the binomial distribution. Journal of the American Statistical Association, 76(375), 637-642.; Pawitan, Y. (2001). In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford University Press. New York.; Pewsey, A. (2000). Problems of inference for Azzalini's skewnormal distribution. Journal of Applied Statistics, 27(7), 859-870.; Raftery, A. E. (1988). Inference for the binomial N parameter: A hierarchical Bayes approach. Biometrika, 75(2), 223-228.; Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingmüller, U. & Timmer, J. (2009). Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics, 25(15), 1923-1929.; Serfling, R. J. (2002). Approximation Theorems of Mathematical Statistics. John Wiley & Sons. New York.; Sprott, D. A. (2000). Statistical inference in science. Springer-Verlag. New York.; Sundberg, R. (2010). Flat and multimodal likelihoods and model lack of fit in curved exponential families. Scandinavian Journal of Statistics, 37(4), 632-643.; Tsionas, E. G. (2001). Likelihood and Posterior Shapes in Johnson's System. Sankhya: The Indian Journal of Statistics, Series B, 63(1), 3-9.; Tumlinson, S. E. (2015). On the non-existence of maximum likelihood estimates for the extended exponential power distribution and its generalizations. Statistics & Probability Letters, 107, 111-114; https://revistas.unal.edu.co/index.php/rfc/article/view/97888

  2. 2
    Academic Journal

    المصدر: Revista de la Facultad de Ciencias; Vol. 11 No. 2 (2022): Special Issue: Flat Likelihoods; 74-99 ; Revista de la Facultad de Ciencias; Vol. 11 Núm. 2 (2022): Número Especial: Verosimilitudes Planas; 74-99 ; 2357-5549 ; 0121-747X

    وصف الملف: application/pdf

    Relation: https://revistas.unal.edu.co/index.php/rfc/article/view/100986/84230; Acuña-Zegarra, M. A., Díaz-Infante, S., Baca-Carrasco, D., Olmos-Liceaga, D. (2021). COVID-19 optimal vaccination policies: a modeling study on efficacy, natural and vaccine-induced immunity responses. Mathematical Biosciences, 6337, 108614.; Acuña-Zegarra, M. A., Santana-Cibrian, M. \& Velasco-Hernández, J. X. (2020). Modeling behavioral change and COVID-19 containment in Mexico: A trade-off between lockdown and compliance. Mathematical Biosciences, 325, 108370.; Arino, J. & Van den Driessche, P. (2003). A multi-city epidemic model. Mathematical Population Studies, 10(3), 175-193.; Barndorff-Nielsen, O.E. & Cox, D.R. (1994). Inference and asymptotics. Chapman & Hall/CRC. Boca Raton.; Camacho, A., Kucharski, A. J., Funk, S., Breman, J., Piot, P. & Edmunds, W. J. (2014). Potential for large outbreaks of Ebola virus disease. Epidemics, 9, 70-78.; Capistrán, M.A., Christen, J. A. & Velasco-Hernández, J. X. (2012). Towards uncertainty quantification and inference in the stochastic SIR epidemic model. \textit{Mathematical Biosciences}, 240(2), 250-259.; Chowell, G., Diaz-Dueñas, P., Miller, J. C., Alcazar-Velazco, A., Hyman, J. M., Fenimore, P. W. & Castillo-Chavez, C. (2007). Estimation of the reproduction number of dengue fever from spatial epidemic data. Mathematical Biosciences, 208(2), 571-589.; Chowell, G., Torre, C. A., Munayco-Escate, C., Suarez-Ognio, L., Lopez-Cruz, R., Hyman, J. M. & Castillo-Chavez, C. (2008). Spatial and temporal dynamics of dengue fever in Peru: 1994--2006. Epidemiology & Infection, 136(12), 1667-1677.; Chowell, G., Towers, S., Viboud, C., Fuentes, R., Sotomayor, V., Simonsen, L.,Miller, M. A., Lima, M., Villarroel, C., Chiu, M., Villarroel, J. E. & Olea, A. (2012). The influence of climatic conditions on the transmission dynamics of the 2009 A/H1N1 influenza pandemic in Chile. BMC Infectious Diseases, 12(1), 1-12.; Cole, D. J. (2020). Parameter redundancy and identifiability. Chapman & Hall/CRC. Boca Raton.; Cosner, C. (2015). Models for the effects of host movement in vector-borne disease systems. Mathematical Biosciences, 270, 192-197.; Funk, S., Kucharski, A. J., Camacho, A., Eggo, R. M., Yakob, L., Murray, L. M. & Edmunds, W. J. (2016). Comparative Analysis of Dengue and Zika Outbreaks Reveals Differences by Setting and Virus. PLoS Neglected Tropical Diseases, 10(12), e0005173.; Gábor, A., Villaverde, A. F. & Banga, J. R. (2017). Parameter identifiability analysis and visualization in large-scale kinetic models of biosystems. BMC Systems Biology, 11(1), 1-16.; Ghosh, I., Sardar, T. & Chattopadhyay, J. (2017). A Mathematical Study to Control Visceral Leishmaniasis: An Application to South Sudan. Bulletin of Mathematical Biology, 79(5), 1100-1134.; Ghosh, I., Tiwari, P. K., Samanta, S., Elmojtaba, I. M., Al-Salti, N. & Chattopadhyay, J. (2018). A simple SI-type model for HIV/AIDS with media and self-imposed psychological fear. Mathematical Biosciences, 306, 160-169.; Guanghu, Z., Tao, L., Jianpeng, X., Bing, Z., Tie, S., Yonghui, Z., Lifeng, L., Zhiqiang, P., Aiping, D., Wenjun, M. & Yuantao, H. (2019). Effects of human mobility, temperature and mosquito control on the spatiotemporal transmission of dengue. Science of The Total Environment, 651, 969-978.; Gui-Quan, S., Jun-Hui, X., Sheng-He, H., Zhen, J,; Ming-Tao, L. & Liqun, L. (2017). Transmission dynamics of cholera: Mathematical modeling and control strategies. Communications in Nonlinear Science and Numerical Simulation, 45, 235-244.; Hendron, R. W. S. & Bonsall, M. B. (2016). The interplay of vaccination and vector control on small dengue networks. Journal of Theoretical Biology, 407, 349-361.; Kalbfleisch, J. G. (1985). Probability and Statistical Inference, Vol. 2. Springer-Verlag. New York.; Kao, Y. H. & Eisenberg, M. C. (2018). Practical unidentifiability of a simple vector-borne disease model: Implications for parameter estimation and intervention assessment. Epidemics, 25, 89-100.; Kermack, W. O. & McKendrick, A. G. (1927). Contribution to the mathematical theory of epidemics. Proccedings of the Royal Society A, 115(772), 700--721.; Khan, A., Hassan, M. & Imran, M. (2014). Estimating the basic reproduction number for single-strain dengue fever epidemics. Infectious Diseases of Poverty, 3(1), 1-17.; Kim, J. E., Lee, H., Lee, C. H. & Lee, S. (2017). Assessment of optimal strategies in a two-patch dengue transmission model with seasonality. PLoS ONE, 12(3), e0173673.; Lee, S. & Castillo-Chavez, C. (2015). The role of residence times in two-patch dengue transmission dynamics and optimal strategies. Journal of Theoretical Biology, 374, 152-164.; Lloyd-Smith, J. O. (2007). Maximum likelihood estimation of the negative binomial dispersion parameter for highly overdispersed data, with applications to infectious diseases. PLoS ONE, 2(2), e180.; Ma, J. (2020). Estimating epidemic exponential growth rate and basic reproduction number. Infectious Disease Modelling, 5, 129-141.; Marquis, A.D., Arnold, A., Dean-Bernhoft, C., Carlson, B.E. & Olufsen, M. S. (2018). Practical identifiability and uncertainty quantification of a pulsatile cardiovascular model. Mathematical Biosciences, 304, 9-24.; Mishra, A., Ambrosio, B., Gakkhar, S. & Aziz-Alaoui, M. A. (2018). A network model for control of dengue epidemic using sterile insect technique. Mathematical Biosciences & Engineering, 15(2), 441-460.; Mishra, A. & Gakkhar, S. (2018). Non-linear dynamics of two-patch model incorporating secondary dengue infection. International Journal of Applied and Computational Mathematics, 4(19), 1-22.; Murphy, S. A. & Van Der Vaart, A. W. (2000). On profile likelihood. Journal of the American Statistical Association, 95(450), 449-465.; Nguyen, V. K., Parra-Rojas, C. & Hernandez-Vargas, E. A. (2018). The 2017 plague outbreak in Madagascar: Data descriptions and epidemic modelling. Epidemics, 25, 20-25.; Núñez-López, M., Ramos, L. A. & Velasco-Hernández, J. X. (2021). Migration rate estimation in an epidemic network. Applied Mathematical Modelling, 89, 1949-1964.; Pandey, A., Mubayi, A. & Medlock, J. (2013). Comparing vector-host and SIR models for dengue transmission. Mathematical Biosciences, 246(2), 252-259.; Pawitan, Y. (2001). In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford University Press. New York.; Phaijoo, G. R. & Gurung, D. B. (2016). Mathematical study of dengue disease transmission in multi-patch environment. Applied Mathematics, 7(14), 1521-1533.; Qi, L., Xue, M., Cui, J.A., Wang, Q. & Wang, T. (2018). Schistosomiasis transmission model and its control in Anhui province. Bulletin of Mathematical Biology, 80(9), 2435-2451.; Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingmüller, U. & Timmer, J. (2009). Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics, 25(15), 1923-1929.; Rosenbaum, E. A., Pechen De D'angelo, A. M., Bergoc, R. M. & Venturino, A. (1999). Modelling acetylcholinesterase kinetics: The identifiability problem in parameter estimation. Journal of Biological Systems, 7(01), 95-111.; Saccomani, M. P. & Thomaseth, K. (2018). The union between structural and practical identifiability makes strength in reducing oncological model complexity: a case study. Complexity, 2018.; Saldaña, F., Flores-Arguedas, H., Camacho-Gutiérrez, J. A. & Barradas, I. (2020). Modeling the transmission dynamics and the impact of the control interventions for the COVID-19 epidemic outbreak. Mathematical Biosciences and Engineering, 17(4), 4165-4183.; Sasmal, S. K., Ghosh, I., Huppert, A. & Chattopadhyay, J. (2018). Modeling the spread of Zika virus in a stage-structured population: effect of sexual transmission. Bulletin of Mathematical Biology, 80(11), 3038-3067.; Serfling, R. J. (2002). Approximation Theorems of Mathematical Statistics. John Wiley & Sons. New York.; Sprott, D. A. (2000), Statistical inference in science. Springer-Verlag. New York.; Tocto-Erazo, M. R., Espíndola-Zepeda, J. A., Montoya-Laos, J. A., Acuña-Zegarra, M. A., Olmos-Liceaga, D., Reyes-Castro, P. A. & Figueroa-Preciado, G. (2020), Lockdown, relaxation, and acme period in COVID-19: A study of disease dynamics in Hermosillo, Sonora, Mexico. PLoS ONE, 15(12), e0242957.; Tocto-Erazo, M. R., Olmos-Liceaga, D. & Montoya, J. A. (2021). Effect of daily periodic human movement on dengue dynamics: The case of the 2010 outbreak in Hermosillo, Mexico. Applied Mathematical Modelling, 97, 559-567.; Towers, S., Brauer, F., Castillo-Chavez, C., Falconar, A.K., Mubayi, A. & Romero-Vivas, C. M. (2016). Estimate of the reproduction number of the 2015 Zika virus outbreak in Barranquilla, Colombia, and estimation of the relative role of sexual transmission. Epidemics, 17, 50-55.; Tuncer, N., Gulbudak, H., Cannataro, V. L. & Martcheva, M. (2016). Structural and practical identifiability issues of immuno-epidemiological vector-host models with application to rift valley fever. \textit{Bulletin of Mathematical Biology, 78(9), 1796-1827.; Tuncer, N., Mohanakumar, C., Swanson, S. & Martcheva, M. (2018). Efficacy of control measures in the control of Ebola, Liberia 2014-2015. Journal of Biological Dynamics, 12(1), 913-937.; Vinh, D. N., Ha, D.T.M., Hanh, N.T., Thwaites, G., Boni, M. F., Clapham, H. E. & Thuong, N. T. T. (2018). Modeling tuberculosis dynamics with the presence of hyper-susceptible individuals for Ho Chi Minh City from 1996 to 2015. BMC Infectious Diseases, 18(1), 1-13.; Xiao, Y. & Zou, X. (2014). Transmission dynamics for vector-borne diseases in a patchy environment. Journal of Mathematical Biology, 69(1), 113-146.; Zhan, C., Li, B.Y.S. & Yeung, L.F. (2015). Structural and practical identifiability analysis of S-system. IET Systems Biology, 9(6), 285-293.; https://revistas.unal.edu.co/index.php/rfc/article/view/100986

  3. 3
    Academic Journal

    المصدر: Revista de la Facultad de Ciencias; Vol. 11 No. 2 (2022): Special Issue: Flat Likelihoods; 25-38 ; Revista de la Facultad de Ciencias; Vol. 11 Núm. 2 (2022): Número Especial: Verosimilitudes Planas; 25-38 ; 2357-5549 ; 0121-747X

    وصف الملف: application/pdf

    Relation: https://revistas.unal.edu.co/index.php/rfc/article/view/97782/85207; Berger, J. O., Liseo, B. & Wolpert, R. L. (1999). Integrated likelihood methods for eliminating nuisance parameters. Statistical Science, 14(1), 1-22.; Breusch, T. S., Robertson, J. C. & Welsh, A. H. (1997). The emperor's new clothes: a critique of the multivariate t regression model. Statistica Neerlandica, 51(3), 269-286.; Casella, G. & Berger, R. L. (2002). Statistical inference. Duxbury. Pacific Grove, CA.; Casella, G., Berger, R. L. & Santana, D. (2001). Solutions Manual for Statistical Inference.; Catchpole, E. A. & Morgan, B. J. (1997). Detecting parameter redundancy. Biometrika, 84(1), 187-196.; Cheng, R. C. H. & Iles, T. C. (1990). Embedded models in three-parameter distributions and their estimation. Journal of the Royal Statistical Society. Series B (Methodological), 52(1), 135-149.; Cole, S. R., Chu, H. & Greenland, S. (2013). Maximum likelihood, profile likelihood, and penalized likelihood: a primer. American Journal of Epidemiology, 179(2), 252-260.; Cox, D. R. (2006). Principles of statistical inference. Cambridge university Press. Cambridge.; El Adlouni, S., Ouarda, T. B., Zhang, X., Roy, R. & Bobée, B. (2007). Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resources Research, 43 (3), W03410.; Farcomeni, A.& Tardella, L. (2012). Identifiability and inferential issues in capture-recapture experiments with heterogeneous detection probabilities. Electronic Journal of Statistics, 6, 2602-2626.; Fay, M. P., Noubary, F. & Saul, A. (2009). Robust Noninferiority Tests for Potency of a Test Drug Against a Reference Drug. Statistics in Biopharmaceutical Research, 1(3), 291-300.; Frery, A. C., Cribari-Neto, F. & De Souza, M. O. (2004). Analysis of minute features in speckled imagery with maximum likelihood estimation. EURASIP Journal on Advances in Signal Processing, 2004(16), 2476-2491.; Ghosh, M., Datta, G. S., Kim, D. & Sweeting, T. J. (2006). Likelihood-based inference for the ratios of regression coeficients in linear models. Annals of the Institute of Statistical Mathematics, 58(3), 457-473.; Ghosh, M., Yin, M. & Kim, Y. H. (2003). Objective Bayesian inference for ratios of regression coeficients in linear models. Statistica Sinica, 13(2), 409-422.; Harter, H. L. & Moore, A. H. (1966). Local-maximum-likelihood estimation of the parameters of three-parameter lognormal populations from complete and censored samples. Journal of the American Statistical Association, 61(315), 842-851.; Hirschberg, J. & Lye, J. (2010). A reinterpretation of interactions in regressions. Applied Economics Letters, 17(5), 427-430.; Kalbfleisch, J. G. (1985). Probability and Statistical Inference, Vol. 2. Springer-Verlag. New York.; Kreutz, C., Raue, A., Kaschek, D.& Timmer, J. (2013). Profile likelihood in systems biology. The FEBS journal, 280(11), 2564-2571.; Li, R. & Sudjianto, A. (2005). Analysis of computer experiments using penalized likelihood in Gaussian Kriging models. Technometrics, 47(2), 111-120.; Lima, V. M. & Cribari-Neto, F. (2019). Penalized maximum likelihood estimation in the modified extended Weibull distribution. Communications in Statistics-Simulation and Computation, 48(2), 334-349.; Liu, S., Wu, H. & Meeker, W. Q. (2015). Understanding and addressing the unbounded "likelihood" problem. The American Statistician, 69(3), 191-200.; Martins, E. S. & Stedinger, J. R. (2000). Generalized maximum-likelihood generalized extreme value quantile estimators for hydrologic data. Water Resources Research, 36(3), 737-744.; Martins, E. S. & Stedinger, J. R. (2001). Generalized maximum likelihood Pareto-Poisson estimators for partial duration series. Water Resources Research, 37(10), 2551-2557.; Montoya, J. A., Díaz-Francés, E.& Sprott, D. A. (2009). On a criticism of the profile likelihood function. Statistical Papers, 50(1), 195-202.; Pewsey, A. (2000). Problems of inference for Azzalini's skewnormal distribution. Journal of Applied Statistics, 27(7), 859-870.; Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingmüller, U. & Timmer, J. (2009). Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics, 25(15), 1923-1929.; Rawlings, J. O., Pantula, S. G. & Dickey, D. A. (1998). Applied regression analysis: a research tool. Springer-Verlag. New York.; Rosenblad, A. K. (2020). The mean, variance, and bias of the OLS based estimator of the extremum of a quadratic regression model for small samples. Communications in Statistics-Theory and Methods, 51(9), 2870-2886.; Searle, S. R. & Gruber, M. H. (1971). Linear models. John Wiley & Sons. New York.; Sprott, D. A. (2008). Statistical inference in science. Springer-Verlag. New York.; Sundberg, R. (2010). Flat and multimodal likelihoods and model lack of fit in curved exponential families. Scandinavian Journal of Statistics, 37(4), 632-643.; Tsionas, E. G. (2001). Likelihood and Posterior Shapes in Johnson's System. Sankhya: The Indian Journal of Statistics, Series B, 63(1), 3-9.; Tumlinson, S. E. (2015). On the non-existence of maximum likelihood estimates for the extended exponential power distribution and its generalizations. Statistics & Probability Letters, 107, 111-114.; https://revistas.unal.edu.co/index.php/rfc/article/view/97782

  4. 4
    Academic Journal

    المصدر: Revista de la Facultad de Ciencias; Vol. 11 No. 2 (2022): Special Issue: Flat Likelihoods; 39-53 ; Revista de la Facultad de Ciencias; Vol. 11 Núm. 2 (2022): Número Especial: Verosimilitudes Planas; 39-53 ; 2357-5549 ; 0121-747X

    وصف الملف: application/pdf

    Relation: https://revistas.unal.edu.co/index.php/rfc/article/view/98450/84228; Barnard, G. A. (1967). The use of the likelihood function in statistical practice. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, 27--40.; Barnard, G. A. & Sprott D. A. (1983). Likelihood. In: Kotz S, Johnson NL (eds) Encyclopedia of statistical science, Vol 4. Wiley, New York, pp 639--644.; Barndorff-Nielsen, O. E. & Cox, D. R. (1994). Inference and asymptotics. Chapman & Hall/CRC. Boca Raton.; Berger, J. O., Liseo, B. & Wolpert, R. L. (1999). Integrated likelihood methods for eliminating nuisance parameters. Statistical Science, 14(1), 1-28.; Bolívar-Cimé, A., Díaz-Francés, E. & Ortega, J. (2015). Optimality of profile likelihood intervals for quantiles of extreme value distributions: application to environmental disasters. Hydrological Sciences Journal, 60(4), 651-670.; Breusch, T. S., Robertson, J. C. & Welsh, A. H. (1997). The emperor's new clothes: a critique of the multivariate t regression model. Statistica Neerlandica, 51(3), 269-286.; Catchpole, E. A. & Morgan, B. J. (1997). Detecting parameter redundancy. Biometrika, 84(1), 187-196.; Cheng, R. C. H. & Iles, T. C. (1990). Embedded models in three-parameter distributions and their estimation. Journal of the Royal Statistical Society. Series B (Methodological), 52(1), 135-149.; Cole, S. R., Chu, H. & Greenland, S. (2013). Maximum likelihood, profile likelihood, and penalized likelihood: a primer. American Journal of Epidemiology, 179(2), 252-260.; Cousineau, D., Goodman, V. W. & Shiffrin, R. M. (2002). Extending statistics of extremes to distributions varying in position and scale and the implications for race models. Journal of Mathematical Psychology, 46(4), 431-454.; De Haan, L. (1990). Fighting the arch-enemy with mathematics. Statistica neerlandica, 44(2), 45-68.; Deng, B., Jiang, D. & Gong, J. (2018). Is a three-parameter Weibull function really necessary for the characterization of the statistical variation of the strength of brittle ceramics?. Journal of the European Ceramic Society, 38(4), 2234-2242.; El Adlouni, S., Ouarda, T. B., Zhang, X., Roy, R. & Bobée, B. (2007). Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resources Research, 43(3), W03410.; Elmahdy, E. E. & Aboutahoun, A. W.(2013). A new approach for parameter estimation of finite Weibull mixture distributions for reliability modeling. Applied Mathematical Modelling, 37(4), 1800-1810.; Elmahdy, E. E. (2015). A new approach for Weibull modeling for reliability life data analysis. Applied Mathematics and computation, 250, 708-720.; Farcomeni, A. & Tardella, L. (2012). Identifiability and inferential issues in capture-recapture experiments with heterogeneous detection probabilities. Electronic Journal of Statistics, 6, 2602-2626.; Frery, A. C., Cribari-Neto, F. & De Souza, M. O. (2004). Analysis of minute features in speckled imagery with maximum likelihood estimation. EURASIP Journal on Advances in Signal Processing, 2004(16), 2476-2491.; Ghosh, M., Datta, G. S., Kim, D. & Sweeting, T. J. (2006). Likelihood-based inference for the ratios of regression coefficients in linear models. Annals of the Institute of Statistical Mathematics, 58(3), 457-473.; Green, E. J., Roesch, F. A., Smith, A. F. & Strawderman, W. E. (1994). Bayesian Estimation for the Three-Parameter Weibull Distribution with Tree Diameter Data. Biometrics, 50(1), 254-269.; Harter, H. L. & Moore, A. H. (1966). Local-maximum-likelihood estimation of the parameters of three-parameter lognormal populations from complete and censored samples. Journal of the American Statistical Association, 61(315), 842-851.; Hirose, H. & Lai, T. L. (1997). Inference from grouped data in three-parameter Weibull models with applications to breakdown-voltage experiments. Technometrics, 39(2), 199-210.; Khan, H. M., Albatineh, A., Alshahrani, S., Jenkins, N. & Ahmed, N. U. (2011). Sensitivity analysis of predictive modeling for responses from the three-parameter Weibull model with a follow-up doubly censored sample of cancer patients. Computational Statistics & Data Analysis, 55(12), 3093-3103.; Kalbfleisch, J. G. (1985). Probability and Statistical Inference, Vol. 2. Springer-Verlag. New York.; Koutsoyiannis, D. (2004). Statistics of extremes and estimation of extreme rainfall: I. Theoretical investigation/Statistiques de valeurs extrêmes et estimation de précipitations extrêmes: I. Recherche théorique. Hydrological Sciences Journal, 49(4).; Kreutz, C., Raue, A., Kaschek, D. & Timmer, J. (2013). Profile likelihood in systems biology. The FEBS journal, 280(11), 2564-2571.; Li, R. & Sudjianto, A. (2005). Analysis of computer experiments using penalized likelihood in Gaussian Kriging models. Technometrics, 47(2), 111-120.; Lima, V. M. & Cribari-Neto, F. (2019). Penalized maximum likelihood estimation in the modified extended Weibull distribution. Communications in Statistics-Simulation and Computation, 48(2), 334-349.; Liu, S., Wu, H. & Meeker, W. Q. (2015). Understanding and addressing the unbounded ``likelihood'' problem. The American Statistician}, 69(3), 191-200.; Martins, E. S. & Stedinger, J. R. (2000). Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resources Research, 36(3), 737-744.; Martins, E. S. & Stedinger, J. R. (2001). Generalized maximum likelihood Pareto-Poisson estimators for partial duration series. Water Resources Research, 37(10), 2551-2557.; Montoya, J. A. (2008). La verosimilitud perfil en la Inferencia Estadística. Centro de Investigación en Matemáticas, A. C., Guanajuato, Gto., México.; Montoya, J. A., Díaz-Francés, E. & Sprott, D.A. (2009). On a criticism of the profile likelihood function. Statistical Papers, 50(1), 195-202.; Murphy, S. A. & Van Der Vaart, A. W. (2000). On profile likelihood. Journal of the American Statistical Association, 95(450), 449-465.; Pawitan, Y. (2001). In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford University Press. New York.; Pewsey, A. (2000). Problems of inference for Azzalini's skewnormal distribution. Journal of Applied Statistics, 27(7), 859-870.; Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingmüller, U. & Timmer, J. (2009). Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics, 25(15), 1923-1929.; Serfling, R. J. (2002). Approximation Theorems of Mathematical Statistics. John Wiley & Sons. New York.; Silva, H. P. T. N. & Peiris, T. S. G.(2017). Statistical modeling of weekly rainfall: a case study in Colombo city in Sri Lanka. Proceedings of the Engineering Research Conference (MERCon), Moratuwa, IEEE, 241-246.; Smith, R. L. & Naylor, J. C. (1987). A comparison of maximum likelihood and Bayesian estimators for the three parameter Weibull distribution. Journal of the Royal Statistical Society, 36(3), 358--369.; Sprott, D. A. (2000). Statistical inference in science. Springer-Verlag. New York.; Sundberg, R. (2010). Flat and multimodal likelihoods and model lack of fit in curved exponential families. Scandinavian Journal of Statistics, 37(4), 632-643.; Tsionas, E. G. (2001). Likelihood and Posterior Shapes in Johnson's System. Sankhya: The Indian Journal of Statistics, Series B, 63(1), 3-9.; Tumlinson, S. E. (2015). On the non-existence of maximum likelihood estimates for the extended exponential power distribution and its generalizations. Statistics & Probability Letters, 107, 111-114.; https://revistas.unal.edu.co/index.php/rfc/article/view/98450

  5. 5
  6. 6