يعرض 1 - 16 نتائج من 16 نتيجة بحث عن '"velocidad de onda de corte"', وقت الاستعلام: 1.20s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal

    المصدر: Tecnura Journal; Vol. 21 No. 51 (2017): January - March; 67-80 ; Tecnura; Vol. 21 Núm. 51 (2017): Enero - Marzo; 67-80 ; 2248-7638 ; 0123-921X

    وصف الملف: application/pdf; text/html

    Relation: https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/11969/12609; https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/11969/12819; Amaratunga, A. y Grozic, J.L.H. (2009). On the undrained unloading behaviour of gassy sands. Canadian Geotechnical Journal, 46, 1267-1276.; Been, K.; Jefferies, M.G. y Hachey, J. (1991). The critical state of sands. Géotechnique, 41(3), 365-381.; Castro, G.; Seed, R.B.; Keller, T.O. y Seed, H.B. (1992). Steady-state strength analysis of lower San Fernando Dam slide. Journal of Geotechnical Engineering, 118(3), 406-427.; Chaney, R. y Mulilis, J.P. (1978). Suggested method for soil specimen remolding by wet-raining. Geotechnical Testing Journal, 1(2), 107-108.; Chern, J.C. (1981). Effect of static shear on resistance to liquefaction. Tesis M.A.Sc. Vancouver, Canadá: The University of British Columbia.; Chern, J.C. (1985). Undrained response of saturated sands with emphasis on liquefaction and cyclic mobility. Tesis de doctorado. Vancouver, Canadá: The University of British Columbia.; Finno, R.J.: Gallant, A.P. y Sabatini, P.J. (2016). Evaluating Ground Improvement after Blast Densification: Performance at the Oakridge Landfill. Journal of Geotechnical and Geoenvironmental Engineering, 142(1), 10.1061/(ASCE)GT.1943-5606.0001365, 04015054.; Ghionna, V. y Porcino, D. (2006). Liquefaction Resistance of Undisturbed and Reconstituted Samples of a Natural Coarse Sand from Undrained Cyclic Triaxial Tests. Journal of Geotechnical and Geoenvironmental Engineering, 132(2), 194-202. DOI:10.1061/(ASCE)1090-0241(2006)132:2(194); Gohl, W.B.; Jefferies, M.G.; Howie, J.A. y Diggle, D. (2000). Explosive compaction: design, implementation and effectiveness. Géotechnique, 50(6), 657-665.; Grozic, J.L.H.; Imam, S.M.R.; Robertson, P.K. y Morgenstern, N.R. (2005). Constitutive modeling of gassy sand behaviour. Canadian Geotechnical Journal, 42(3), 812-829.; Hardin, B.O. y Black, W.L. (1968). Vibration modulus of normally consolidated clay. Journal of the Soil Mechanics and Foundations Division, 94(2), 353-370.; Hardin, B.O. y Richart, F.E.J. (1963). Elastic wave velocities in granular soils. Journal of the Soil Mechanics and Foundations Division, 89(1), 33-65.; Jung, Y.H., Cho, W. y Finno, R.J. (2007). Defining yield from bender element measurements in triaxial stress probe experiments. Journal of Geotechnical and Geoenvironmental Engineering, 133(7), 841-849.; Knai, H.B. (2011). Measuring the effect of occluded gas bubbles on stress-strain response of a loose to medium sand. Tesis de maestría. Evanston, IL: Northwestern University.; Kokusho, T.; Yoshida, Y. y Esashi, Y. (1982). Dynamic properties of soft clay for wide strain range. Soils Found., 22(4), 1-18.; Ladd, R.S. (1978). Preparing test speciments using undercompaction. Geotech Test J, GTJODJ., 1(1), 16-23.; Marcuson, W.F. y Wahls, H.E. (1972). Time effects on dynamicshear modulus of clays. Journal of the Soil Mechanics and Foundations Division, 98(12), 1359-1373.; Nageswaran, S. (1983). Effect of gas bubbles on the sea bed behaviour. Tesis de doctorado. Oxford University.; Narsilio, G.A. (2006). Spatial variability and terminal density: Implication in soil behavior. Tesis de doctorado. Atlanta, GA: Georgia Institute of Technology.; Narsilio, G.A.; Santamarina, J.C.; Hebeler, T. y Bachus, R. (2009). Blast Densification: Multi-Instrumented Case History. Journal of Geotechnical and Geoenvironmental Engineering, 135(6), 723-734.; Okamura, M.; Ishihara, M. y Tamura, K. (2006). Degree of saturation and liquefaction resistances of sand improved with sand compaction pile. Journal of Geotechnical and Geoenvironmental Engineering, 132(2), 258-264.; Okamura, M.; Takebayashi, M.; Nishida, K.; Fujii, N.; Jinguji, M.; Imasato, T.; .; Nakagawa, E. (2011). In-Situ Desaturation Test by Air Injection and Its Evaluation through Field Monitoring and Multiphase Flow Simulation. Journal of Geotechnical and Geoenvironmental Engineering, 137(7), 643-652. DOI:10.1061/(asce)gt.1943-5606.0000483; Poulos, S.J.; Castro, G. y France, J.W. (1985). Liquefaction evaluation procedure. Journal of Geotechnical Engineering, 111(6), 772-792.; Ramos C., A.M. (2015). Influence of the void ratio and the confining on the static liquefaction in slopes in changi sand. Revista Tecnura, 19(43), 63-73.; Ramos C., A.M.; Felipe, P.-S.L. y Vega-Posada, C.A. (2016). Análisis de elementos finitos con un continuo elástico lineal tipo Cosserat. Revista Tecnura, 20(50), 43-54.; Shibata, T. y Soelarno, D.S. (1978). Stress–strain characteristics of clays under cyclic loading. Paper presented at the Proc., Japanese Society of Civil Engineering.; Shibuya, S.; Hwang, S.C. y Mitachi, T. (1997). Elastic shear modulus of soft clays from shear wave velocity measurement. Géotechnique, 47(3), 593-601.; Shibuya, S. y Tanaka, H. (1996). Estimate of elastic shear modulus in Holocene soil deposits. Journal of the Japanese Geotechnical Society : soils and foundation, 36(4), 45-55.; Tomita, Y., Shima, A., & Ohno, T. (1984). Collapse of multiple gas bubbles by a shock wave and induced impulsive pressure. Journal of Applied Physics, 56(1), 125-131.; Vaid, Y.P y Sivathayalan, S. (2000). Fundamental factors affecting liquefaction susceptibility of sands. Canadian Geotechnical Journal, 37(3), 592–606.; Vaid, Y.P.; Sivathayalan, S. y Stedman, D. (1999). Influence of specimen-reconstituting method on the undrained response of sand. Geotechnical Testing Journal, 22(3), 187-195.; Vega-Posada, C.A. (2012). Evaluation of liquefaction susceptibility of clean sands after blast densification. Tesis de doctorado. Evanston, IL: Northwestern Univ.; Vega-Posada, C.A.; Finno, R.J. y Zapata-Medina, D.G. (2014). Effect of Gas on the Mechanical Behavior of Medium-Dense Sands. Journal of Geotechnical and Geoenvironmental Engineering, 140(11), http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0001163, 04014063. doi:10.1061/(ASCE)GT.1943-5606.0001163; Vega-Posada, C.A.; Zapata-Medina, D.G. y García-Aristázabal, E.F. (2014). Ground surface settlement of loose sands densified with explosives. Revista Facultad de Ingeniería, (70), 9-17.; Verdugo, R. e Ishihara, K. (1996). The steady state of sandy soils. Soils and Foundation, 36(2), 81-91.; Yegian, M.K.; Eseller-Bayat, E.; Alshawabkeh, A. y Ali, S. (2007). Induced-Partial Saturation for Liquefaction Mitigation: Experimental Investigation. Journal of Geotechnical and Geoenvironmental Engineering, 133(4), 372-380. doi:10.1061/(asce)1090-0241(2007)133:4(372); https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/11969

  4. 4
    Dissertation/ Thesis
  5. 5
  6. 6
    Dissertation/ Thesis

    المؤلفون: Barón Castro, Maira Alejandra

    المساهمون: Rodríguez Granados, Edgar Eduardo

    جغرافية الموضوع: Bogotá

    وصف الملف: 124 páginas; application/pdf

    Relation: Almeida, M., Marques, M., & Baroni, M. (2010). Geotechnical parameters of very soft clays from CPTu. 2nd International Symposium on Cone Penetration Testing.; ASTM INTERNATIONAL. (01 de 05 de 2021). ASTM. Obtenido de https://la.astm.org/; Bagińska, I., Kawa, M., & Łydżba, D. (2020). Identification of soil types and their arrangement in overburden heaps using the deconvolution approach and CPTu tests results. Engineering Geology, 276(February), 105759. https://doi.org/10.1016/j.enggeo.2020.105759; Campanella, R. G., Gillespie, D., & Robertson, P. K. (1982). Pore pressures during cone penetration testing. Penetration Testing. Proc. 2nd European Symposium, Amsterdam, January 1982, 507–512.; Chang, M. F. (1990). Interpretation of overconsolidation ratio from in situ test in Recent clay deposits in Singapore and Malaysia.; Chen, B. S. Y., & Mayne, P. W. (1996). Statistical relationships between piezocone measurements and stress history of clays. Canadian Geotechnical Journal, 33(3), 488–498. https://doi.org/10.1139/t96-070; Consorcio Troncales Bogotá. (2019). Factibilidad y actualización, complementación, ajustes de los estudios y diseños, y estudios y diseños para la ampliación y extensión de la Avenida Ciudad de Cali al sistema Transmilenio, entre la Avenida Circunvalar del Sur y la Avenida Calle 170. Bogotá, Contrato No. 1352 de 2017.; Eslami, A., & Fellenius, B. H. (2004). CPT and CPTu data for soil profile interpretation: Review of methods and a proposed new approach. Iranian Journal of Science and Technology, Transaction B: Engineering, 28(B1), 69–86.; Eslami, Abolfazl, Akbarimehr, D., Aflaki, E., & Hajitaheriha, M. M. (2020). Geotechnical site characterization of the Lake Urmia super-soft sediments using laboratory and CPTu records. Marine Georesources and Geotechnology, 38(10), 1223–1234. https://doi.org/10.1080/1064119X.2019.1672121; Fayed, A. L., & Mousa, A. A. (2020). Shear Wave Velocity in the East Nile Delta Clay: Correlations with Static CPT Measurements. Geotechnical and Geological Engineering, 38(2), 2303–2315. https://doi.org/10.1007/s10706-019-01089-4; Zonificación de la respuesta sísmica de Bogotá para el diseño sismo resistente de edificaciones, 21 (2010). https://www.scg.org.co/microzonificacion-sismica-de-bogota-d-c/; Giretti, D., Been, K., Fioravante, V., & Dickenson, S. (2018). CPT calibration and analysis for a carbonate sand. Geotechnique, 68(4), 345–357. https://doi.org/10.1680/jgeot.16.P.312; Guo, Y., Zhang, G., & Liu, S. (2020). Temperature effects on the in-situ mechanical response of clayey soils around an energy pile evaluated by CPTU. Engineering Geology, 276(June), 105712. https://doi.org/10.1016/j.enggeo.2020.105712; Hammam, A. H., Abel-Salam, A. I., & Yousf, M. A. (2017). On the evaluation of pre-consolidation pressure of undisturbed saturated clays. HBRC Journal, 13(1), 47–53. https://doi.org/10.1016/j.hbrcj.2015.02.003; Heidari, P., & Ghazavi, M. (2021). Statistical Evaluation of CPT and CPTu Based Methods for Prediction of Axial Bearing Capacity of Piles. Geotechnical and Geological Engineering, 39(2), 1259–1287. https://doi.org/10.1007/s10706-020-01557-2; IDECA. (24 de 05 de 2020). Mapas IDECA. Obtenido de https://www.ideca.gov.co/recursos/mapas/curva-de-nivel-bogota-dc; IDU. (2021). REPOSITORIO INSTITUCIONAL IDU. Obtenido de https://webidu.idu.gov.co/jspui/; Geología de la Sabana de Bogotá, (2005). https://doi.org/10.1043/0003-9985(2001)1252.0.CO;2; Karlsrud, K., Lunne, T., Kort, D., & Strandvik, S. (2005). CPTU correlations for clays. https://doi.org/10.3233/978-1-61499-656-9-693; Konkol, J., Międlarz, K., & Bałachowski, L. (2019). Geotechnical characterization of soft soil deposits in Northern Poland. Engineering Geology, 259(June), p. 105–187. https://doi.org/10.1016/j.enggeo.2019.105187; Kottegoda, N., & Rosso, R. (2008). Applied Statistics for Civil and Environmental Engineers (Second). Blackwell Malden, MA.; Kulhawy, F. H., & Mayne, P. W. (1990). Manual on Estimating Soil Properties for Foundation Design (Report No. EPRI-EL-6800), Electric Power Research Institute., Palo Alto, CA (USA); Cornell Univ., Ithaca, NY (USA). Geotechnical Engineering Group. In Ostigov. https://doi.org/EPRI-EL-6800; Ladd, C., & Foott, R. (1974). New Design Procedure for Stability of Soft Clays (p. 24).; Long, M., & Donohue, S. (2010). Characterization of Norwegian marine clays with combined shear wave velocity and piezocone cone penetration test (CPTU) data. Canadian Geotechnical Journal, 47(7), 709–718. https://doi.org/10.1139/T09-133; Madiai, C., & Simoni, G. (2004). Shear wave velocity-penetration resistance correlation for Holocene and Pleistocene soils of an area in central Italy. International Symposium on Geotechnical and Geophysical Site Characterization, January 2004, 1687–1694.; Mayne, P. (2016). Evaluating effective stress parameters and undrained shear strength of soft-firm clays from CPT and DMT. Australian Geomechanics Journal, 51(4), 27–55.; Mayne, P. W. (2005). Integrated ground behavior: In-situ and lab tests. Deformation Characteristics of Geomaterials : Recent Investigations and Prospects - International Symposium on Deformation Characteristics of Geomaterials, ISLyon 2003, June, 155–177.; Mayne, P. W. (2006). In-situ test calibrations for evaluating soil parameters. Characterisation and Engineering Properties of Natural Soils, 3–4, 1601–1652. https://doi.org/10.1201/noe0415426916.ch2; Mayne, P. W., & Peuchen, J. (2018). Evaluation of CPTU N kt cone factor for undrained strength of clays. Cone Penetration Testing 2018 - Proceedings of the 4th International Symposium on Cone Penetration Testing, CPT 2018, August, 423–429.; Mayne, P. W., & Rix, G. J. (1995). Correlations Between Shear Wave Velocity and Cone Tip Resistance in Natural Clays. Soils and Foundations, 35(2), 107–110. https://doi.org/10.3208/sandf1972.35.2_107; Mayne, P. W., Christopher, B. R., & DeJong, J. (2001). Manual on Subsurface Investigations. Nat. Highway Inst. Sp. Pub. FHWA NHI-01--031. Fed. Highway Administ, Washington, DC, 394. https://doi.org/10.17226/25379; Mayne, P. W., & Benoît, J. (2020). Analytical CPTU Models Applied to Sensitive Clay at Dover, New Hampshire. Journal of Geotechnical and Geoenvironmental Engineering, 146(12), 04020130. https://doi.org/10.1061/(asce)gt.1943-5606.0002378; Mendoza, C., Caicedo, B., & Lopez, F. (2019). Geotechnical behavior of Bogotá lacustrine soil through its geological history. XVII European Conference on Soil Mechanics and Geotechnical Engineering, October. https://doi.org/10.32075/17ECSMGE-2019-0017; Titulo A - Requisitos Generales de Diseño y Construcción Sismo Resistente, Titulo A REGLAMENTO COLOMBIANO DE CONSTRUCCIÓN SISMO RESISTENTE NSR-10 1 (2010).; Mo, P. Q., Gao, X. W., Yang, W., & Yu, H. S. (2020). A cavity expansion–based solution for interpretation of CPTu data in soils under partially drained conditions. International Journal for Numerical and Analytical Methods in Geomechanics, 44(7), 1053–1076. https://doi.org/10.1002/nag.3050; Motaghedi, H., & Eslami, A. (2014). Analytical Approach for Determination of Soil Shear Strength Parameters from CPT and CPTu Data. Arabian Journal for Science and Engineering, 39(6), 4363–4376. https://doi.org/10.1007/s13369-014-1022-x; Norwegian Geotechnical Institute. (2019). CPTU CORRELATIONS FOR CLAYS.; R (3.6.1). (2019). R for Statistical Computing, Multiplataforma (Windows), R Development Core Team. Obtenido de https://www.r-project.org/; Robertson, P. (2016). Cone penetration test (CPT)-based soil behaviour type (SBT) classification system — An update. Canadian Geotechnical Journal, 53(12), 1910–1927. https://doi.org/10.1139/cgj-2016-0044; Robertson, P., & Cabal, K. (2010). Estimating soil unit weight from CPT. In 2nd International Symposium on Cone Penetration Testing, May, 2–40, Vol 2, 575-583.; Robertson, P., & Cabal, K. (2015). Guide to Cone Penetration Testing (6th Edition). Gregg Drilling & Testing, Inc. www.greggdrilling.com; Robertson, P. K. (2009). Interpretation of cone penetration tests - A unified approach. Canadian Geotechnical Journal, 46(11), 1337–1355. https://doi.org/10.1139/T09-065; Robertson, P. K., Campanella, R. G., Gillespie, D., & Rice, A. (1986). Seismic CPT to measure in situ shear wave velocity. Journal of Geotechnical Engineering, 112(8), 791–803. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:8(791); Robertson, P. K. (2010). Soil behaviour type from the CPT: an update. In 2nd International Symposium on Cone Penetration Testing, 2(May), Vol 2, 575–583.; Schervish, M. J. (1996). P values: What they are and what they are not. American Statistician, 50(3), 203–206. https://doi.org/10.1080/00031305.1996.10474380; Senneset, K., Sandven, R., & Janbu, N. (1989). Evaluation of soil parameters from piezocone tests. Transportation Research Record, 1235, 24–37.; Torres, V., Vandenberghe, J., & Hooghiemstra, H. (2005). An environmental reconstruction of the sediment infill of the Bogotá basin (Colombia) during the last 3 million years from abiotic and biotic proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 226(1–2), 127–148. https://doi.org/10.1016/j.palaeo.2005.05.005; Troncoso, P. (2018). Evaluación del método de medición del perfil de velocidad de ondas de corte SPT-sísmico. Universidad de Concepción.; Vardon, P. J., Baltoukas, D., & Peuchen, J. (2018). Thermal Cone Penetration Test (T-CPT). Cone Penetration Testing 2018 - Proceedings of the 4th International Symposium on Cone Penetration Testing, CPT 2018, June, 649–655.; Vardon, P. J., Baltoukas, D., & Peuchen, J. (2019). Interpreting and validating the thermal cone penetration test (T-CPT). Geotechnique, 69(7), 580–592. https://doi.org/10.1680/jgeot.17.P.214; Wasserstein, R. L., & Lazar, N. A. (2016). The ASA’s Statement on p-Values: Context, Process, and Purpose. American Statistician, 70(2), 129–133. https://doi.org/10.1080/00031305.2016.1154108; https://repositorio.unal.edu.co/handle/unal/79677; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
    Dissertation/ Thesis
  13. 13
  14. 14
  15. 15
  16. 16