-
1Academic Journal
المصدر: Tecnura, Vol 21, Iss 51, Pp 67-80 (2017)
مصطلحات موضوعية: arenas sueltas, densificación con explosivos, licuación, mejoramiento de suelos, velocidad de onda de corte, Technology, Engineering (General). Civil engineering (General), TA1-2040
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: Victor Hernández-Maldonado, Martín Díaz-Viera, Arturo Erdely
المصدر: Geofísica Internacional, Vol 53, Iss 2, Pp 163-181 (2014)
مصطلحات موضوعية: permeabilidad, porosidad, velocidad de onda de corte, dependencia multivariada, cópula de bernstein, simulación geoestadística, Geophysics. Cosmic physics, QC801-809
وصف الملف: electronic resource
-
3Academic Journal
المؤلفون: Vega-Posada, Carlos Alberto, Ramos-Cañón, Alfonso Mariano, García Aristizábal, Edwin Fabián
المصدر: Tecnura Journal; Vol. 21 No. 51 (2017): January - March; 67-80 ; Tecnura; Vol. 21 Núm. 51 (2017): Enero - Marzo; 67-80 ; 2248-7638 ; 0123-921X
مصطلحات موضوعية: arenas sueltas, densificación con explosivos, licuación, mejoramiento de suelos, velocidad de onda de corte, Loose sands, blast densification, liquefaction, soil improvement, shear wave velocity
وصف الملف: application/pdf; text/html
Relation: https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/11969/12609; https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/11969/12819; Amaratunga, A. y Grozic, J.L.H. (2009). On the undrained unloading behaviour of gassy sands. Canadian Geotechnical Journal, 46, 1267-1276.; Been, K.; Jefferies, M.G. y Hachey, J. (1991). The critical state of sands. Géotechnique, 41(3), 365-381.; Castro, G.; Seed, R.B.; Keller, T.O. y Seed, H.B. (1992). Steady-state strength analysis of lower San Fernando Dam slide. Journal of Geotechnical Engineering, 118(3), 406-427.; Chaney, R. y Mulilis, J.P. (1978). Suggested method for soil specimen remolding by wet-raining. Geotechnical Testing Journal, 1(2), 107-108.; Chern, J.C. (1981). Effect of static shear on resistance to liquefaction. Tesis M.A.Sc. Vancouver, Canadá: The University of British Columbia.; Chern, J.C. (1985). Undrained response of saturated sands with emphasis on liquefaction and cyclic mobility. Tesis de doctorado. Vancouver, Canadá: The University of British Columbia.; Finno, R.J.: Gallant, A.P. y Sabatini, P.J. (2016). Evaluating Ground Improvement after Blast Densification: Performance at the Oakridge Landfill. Journal of Geotechnical and Geoenvironmental Engineering, 142(1), 10.1061/(ASCE)GT.1943-5606.0001365, 04015054.; Ghionna, V. y Porcino, D. (2006). Liquefaction Resistance of Undisturbed and Reconstituted Samples of a Natural Coarse Sand from Undrained Cyclic Triaxial Tests. Journal of Geotechnical and Geoenvironmental Engineering, 132(2), 194-202. DOI:10.1061/(ASCE)1090-0241(2006)132:2(194); Gohl, W.B.; Jefferies, M.G.; Howie, J.A. y Diggle, D. (2000). Explosive compaction: design, implementation and effectiveness. Géotechnique, 50(6), 657-665.; Grozic, J.L.H.; Imam, S.M.R.; Robertson, P.K. y Morgenstern, N.R. (2005). Constitutive modeling of gassy sand behaviour. Canadian Geotechnical Journal, 42(3), 812-829.; Hardin, B.O. y Black, W.L. (1968). Vibration modulus of normally consolidated clay. Journal of the Soil Mechanics and Foundations Division, 94(2), 353-370.; Hardin, B.O. y Richart, F.E.J. (1963). Elastic wave velocities in granular soils. Journal of the Soil Mechanics and Foundations Division, 89(1), 33-65.; Jung, Y.H., Cho, W. y Finno, R.J. (2007). Defining yield from bender element measurements in triaxial stress probe experiments. Journal of Geotechnical and Geoenvironmental Engineering, 133(7), 841-849.; Knai, H.B. (2011). Measuring the effect of occluded gas bubbles on stress-strain response of a loose to medium sand. Tesis de maestría. Evanston, IL: Northwestern University.; Kokusho, T.; Yoshida, Y. y Esashi, Y. (1982). Dynamic properties of soft clay for wide strain range. Soils Found., 22(4), 1-18.; Ladd, R.S. (1978). Preparing test speciments using undercompaction. Geotech Test J, GTJODJ., 1(1), 16-23.; Marcuson, W.F. y Wahls, H.E. (1972). Time effects on dynamicshear modulus of clays. Journal of the Soil Mechanics and Foundations Division, 98(12), 1359-1373.; Nageswaran, S. (1983). Effect of gas bubbles on the sea bed behaviour. Tesis de doctorado. Oxford University.; Narsilio, G.A. (2006). Spatial variability and terminal density: Implication in soil behavior. Tesis de doctorado. Atlanta, GA: Georgia Institute of Technology.; Narsilio, G.A.; Santamarina, J.C.; Hebeler, T. y Bachus, R. (2009). Blast Densification: Multi-Instrumented Case History. Journal of Geotechnical and Geoenvironmental Engineering, 135(6), 723-734.; Okamura, M.; Ishihara, M. y Tamura, K. (2006). Degree of saturation and liquefaction resistances of sand improved with sand compaction pile. Journal of Geotechnical and Geoenvironmental Engineering, 132(2), 258-264.; Okamura, M.; Takebayashi, M.; Nishida, K.; Fujii, N.; Jinguji, M.; Imasato, T.; .; Nakagawa, E. (2011). In-Situ Desaturation Test by Air Injection and Its Evaluation through Field Monitoring and Multiphase Flow Simulation. Journal of Geotechnical and Geoenvironmental Engineering, 137(7), 643-652. DOI:10.1061/(asce)gt.1943-5606.0000483; Poulos, S.J.; Castro, G. y France, J.W. (1985). Liquefaction evaluation procedure. Journal of Geotechnical Engineering, 111(6), 772-792.; Ramos C., A.M. (2015). Influence of the void ratio and the confining on the static liquefaction in slopes in changi sand. Revista Tecnura, 19(43), 63-73.; Ramos C., A.M.; Felipe, P.-S.L. y Vega-Posada, C.A. (2016). Análisis de elementos finitos con un continuo elástico lineal tipo Cosserat. Revista Tecnura, 20(50), 43-54.; Shibata, T. y Soelarno, D.S. (1978). Stress–strain characteristics of clays under cyclic loading. Paper presented at the Proc., Japanese Society of Civil Engineering.; Shibuya, S.; Hwang, S.C. y Mitachi, T. (1997). Elastic shear modulus of soft clays from shear wave velocity measurement. Géotechnique, 47(3), 593-601.; Shibuya, S. y Tanaka, H. (1996). Estimate of elastic shear modulus in Holocene soil deposits. Journal of the Japanese Geotechnical Society : soils and foundation, 36(4), 45-55.; Tomita, Y., Shima, A., & Ohno, T. (1984). Collapse of multiple gas bubbles by a shock wave and induced impulsive pressure. Journal of Applied Physics, 56(1), 125-131.; Vaid, Y.P y Sivathayalan, S. (2000). Fundamental factors affecting liquefaction susceptibility of sands. Canadian Geotechnical Journal, 37(3), 592–606.; Vaid, Y.P.; Sivathayalan, S. y Stedman, D. (1999). Influence of specimen-reconstituting method on the undrained response of sand. Geotechnical Testing Journal, 22(3), 187-195.; Vega-Posada, C.A. (2012). Evaluation of liquefaction susceptibility of clean sands after blast densification. Tesis de doctorado. Evanston, IL: Northwestern Univ.; Vega-Posada, C.A.; Finno, R.J. y Zapata-Medina, D.G. (2014). Effect of Gas on the Mechanical Behavior of Medium-Dense Sands. Journal of Geotechnical and Geoenvironmental Engineering, 140(11), http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0001163, 04014063. doi:10.1061/(ASCE)GT.1943-5606.0001163; Vega-Posada, C.A.; Zapata-Medina, D.G. y García-Aristázabal, E.F. (2014). Ground surface settlement of loose sands densified with explosives. Revista Facultad de Ingeniería, (70), 9-17.; Verdugo, R. e Ishihara, K. (1996). The steady state of sandy soils. Soils and Foundation, 36(2), 81-91.; Yegian, M.K.; Eseller-Bayat, E.; Alshawabkeh, A. y Ali, S. (2007). Induced-Partial Saturation for Liquefaction Mitigation: Experimental Investigation. Journal of Geotechnical and Geoenvironmental Engineering, 133(4), 372-380. doi:10.1061/(asce)1090-0241(2007)133:4(372); https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/11969
-
4Dissertation/ Thesis
المساهمون: Gamarra Tuco, Rubén Francisco
المصدر: Universidad Católica de Santa María ; Repositorio de la Universidad Católica de Santa María - UCSM
مصطلحات موضوعية: Velocidad de onda de corte, Basamento rocoso, Periodo fundamental, https://purl.org/pe-repo/ocde/ford#2.01.00
وصف الملف: application/pdf
-
5
المؤلفون: Barón Castro, Maira Alejandra
المساهمون: Rodríguez Granados, Edgar Eduardo
المصدر: Repositorio UN
Universidad Nacional de Colombia
instacron:Universidad Nacional de Colombiaمصطلحات موضوعية: 620 - Ingeniería y operaciones afines, Lacustrine deposit, Soil mechanics, Arcillas blandas, Shear wave velocity, CPTu, Transporte urbano, Soft clays, Velocidad de onda de corte, Depósito lacustre, Urban transport, Undrained shear strength, Resistencia al corte no drenado, OCR, Mecánica de los suelos, RSC
وصف الملف: 124 páginas; application/pdf
-
6Dissertation/ Thesis
المؤلفون: Barón Castro, Maira Alejandra
المساهمون: Rodríguez Granados, Edgar Eduardo
مصطلحات موضوعية: 620 - Ingeniería y operaciones afines, CPTu, Resistencia al corte no drenado, RSC, Velocidad de onda de corte, Depósito lacustre, Arcillas blandas, Undrained shear strength, OCR, Shear wave velocity, Lacustrine deposit, Soft clays, Mecánica de los suelos, Soil mechanics, Transporte urbano, Urban transport
جغرافية الموضوع: Bogotá
وصف الملف: 124 páginas; application/pdf
Relation: Almeida, M., Marques, M., & Baroni, M. (2010). Geotechnical parameters of very soft clays from CPTu. 2nd International Symposium on Cone Penetration Testing.; ASTM INTERNATIONAL. (01 de 05 de 2021). ASTM. Obtenido de https://la.astm.org/; Bagińska, I., Kawa, M., & Łydżba, D. (2020). Identification of soil types and their arrangement in overburden heaps using the deconvolution approach and CPTu tests results. Engineering Geology, 276(February), 105759. https://doi.org/10.1016/j.enggeo.2020.105759; Campanella, R. G., Gillespie, D., & Robertson, P. K. (1982). Pore pressures during cone penetration testing. Penetration Testing. Proc. 2nd European Symposium, Amsterdam, January 1982, 507–512.; Chang, M. F. (1990). Interpretation of overconsolidation ratio from in situ test in Recent clay deposits in Singapore and Malaysia.; Chen, B. S. Y., & Mayne, P. W. (1996). Statistical relationships between piezocone measurements and stress history of clays. Canadian Geotechnical Journal, 33(3), 488–498. https://doi.org/10.1139/t96-070; Consorcio Troncales Bogotá. (2019). Factibilidad y actualización, complementación, ajustes de los estudios y diseños, y estudios y diseños para la ampliación y extensión de la Avenida Ciudad de Cali al sistema Transmilenio, entre la Avenida Circunvalar del Sur y la Avenida Calle 170. Bogotá, Contrato No. 1352 de 2017.; Eslami, A., & Fellenius, B. H. (2004). CPT and CPTu data for soil profile interpretation: Review of methods and a proposed new approach. Iranian Journal of Science and Technology, Transaction B: Engineering, 28(B1), 69–86.; Eslami, Abolfazl, Akbarimehr, D., Aflaki, E., & Hajitaheriha, M. M. (2020). Geotechnical site characterization of the Lake Urmia super-soft sediments using laboratory and CPTu records. Marine Georesources and Geotechnology, 38(10), 1223–1234. https://doi.org/10.1080/1064119X.2019.1672121; Fayed, A. L., & Mousa, A. A. (2020). Shear Wave Velocity in the East Nile Delta Clay: Correlations with Static CPT Measurements. Geotechnical and Geological Engineering, 38(2), 2303–2315. https://doi.org/10.1007/s10706-019-01089-4; Zonificación de la respuesta sísmica de Bogotá para el diseño sismo resistente de edificaciones, 21 (2010). https://www.scg.org.co/microzonificacion-sismica-de-bogota-d-c/; Giretti, D., Been, K., Fioravante, V., & Dickenson, S. (2018). CPT calibration and analysis for a carbonate sand. Geotechnique, 68(4), 345–357. https://doi.org/10.1680/jgeot.16.P.312; Guo, Y., Zhang, G., & Liu, S. (2020). Temperature effects on the in-situ mechanical response of clayey soils around an energy pile evaluated by CPTU. Engineering Geology, 276(June), 105712. https://doi.org/10.1016/j.enggeo.2020.105712; Hammam, A. H., Abel-Salam, A. I., & Yousf, M. A. (2017). On the evaluation of pre-consolidation pressure of undisturbed saturated clays. HBRC Journal, 13(1), 47–53. https://doi.org/10.1016/j.hbrcj.2015.02.003; Heidari, P., & Ghazavi, M. (2021). Statistical Evaluation of CPT and CPTu Based Methods for Prediction of Axial Bearing Capacity of Piles. Geotechnical and Geological Engineering, 39(2), 1259–1287. https://doi.org/10.1007/s10706-020-01557-2; IDECA. (24 de 05 de 2020). Mapas IDECA. Obtenido de https://www.ideca.gov.co/recursos/mapas/curva-de-nivel-bogota-dc; IDU. (2021). REPOSITORIO INSTITUCIONAL IDU. Obtenido de https://webidu.idu.gov.co/jspui/; Geología de la Sabana de Bogotá, (2005). https://doi.org/10.1043/0003-9985(2001)1252.0.CO;2; Karlsrud, K., Lunne, T., Kort, D., & Strandvik, S. (2005). CPTU correlations for clays. https://doi.org/10.3233/978-1-61499-656-9-693; Konkol, J., Międlarz, K., & Bałachowski, L. (2019). Geotechnical characterization of soft soil deposits in Northern Poland. Engineering Geology, 259(June), p. 105–187. https://doi.org/10.1016/j.enggeo.2019.105187; Kottegoda, N., & Rosso, R. (2008). Applied Statistics for Civil and Environmental Engineers (Second). Blackwell Malden, MA.; Kulhawy, F. H., & Mayne, P. W. (1990). Manual on Estimating Soil Properties for Foundation Design (Report No. EPRI-EL-6800), Electric Power Research Institute., Palo Alto, CA (USA); Cornell Univ., Ithaca, NY (USA). Geotechnical Engineering Group. In Ostigov. https://doi.org/EPRI-EL-6800; Ladd, C., & Foott, R. (1974). New Design Procedure for Stability of Soft Clays (p. 24).; Long, M., & Donohue, S. (2010). Characterization of Norwegian marine clays with combined shear wave velocity and piezocone cone penetration test (CPTU) data. Canadian Geotechnical Journal, 47(7), 709–718. https://doi.org/10.1139/T09-133; Madiai, C., & Simoni, G. (2004). Shear wave velocity-penetration resistance correlation for Holocene and Pleistocene soils of an area in central Italy. International Symposium on Geotechnical and Geophysical Site Characterization, January 2004, 1687–1694.; Mayne, P. (2016). Evaluating effective stress parameters and undrained shear strength of soft-firm clays from CPT and DMT. Australian Geomechanics Journal, 51(4), 27–55.; Mayne, P. W. (2005). Integrated ground behavior: In-situ and lab tests. Deformation Characteristics of Geomaterials : Recent Investigations and Prospects - International Symposium on Deformation Characteristics of Geomaterials, ISLyon 2003, June, 155–177.; Mayne, P. W. (2006). In-situ test calibrations for evaluating soil parameters. Characterisation and Engineering Properties of Natural Soils, 3–4, 1601–1652. https://doi.org/10.1201/noe0415426916.ch2; Mayne, P. W., & Peuchen, J. (2018). Evaluation of CPTU N kt cone factor for undrained strength of clays. Cone Penetration Testing 2018 - Proceedings of the 4th International Symposium on Cone Penetration Testing, CPT 2018, August, 423–429.; Mayne, P. W., & Rix, G. J. (1995). Correlations Between Shear Wave Velocity and Cone Tip Resistance in Natural Clays. Soils and Foundations, 35(2), 107–110. https://doi.org/10.3208/sandf1972.35.2_107; Mayne, P. W., Christopher, B. R., & DeJong, J. (2001). Manual on Subsurface Investigations. Nat. Highway Inst. Sp. Pub. FHWA NHI-01--031. Fed. Highway Administ, Washington, DC, 394. https://doi.org/10.17226/25379; Mayne, P. W., & Benoît, J. (2020). Analytical CPTU Models Applied to Sensitive Clay at Dover, New Hampshire. Journal of Geotechnical and Geoenvironmental Engineering, 146(12), 04020130. https://doi.org/10.1061/(asce)gt.1943-5606.0002378; Mendoza, C., Caicedo, B., & Lopez, F. (2019). Geotechnical behavior of Bogotá lacustrine soil through its geological history. XVII European Conference on Soil Mechanics and Geotechnical Engineering, October. https://doi.org/10.32075/17ECSMGE-2019-0017; Titulo A - Requisitos Generales de Diseño y Construcción Sismo Resistente, Titulo A REGLAMENTO COLOMBIANO DE CONSTRUCCIÓN SISMO RESISTENTE NSR-10 1 (2010).; Mo, P. Q., Gao, X. W., Yang, W., & Yu, H. S. (2020). A cavity expansion–based solution for interpretation of CPTu data in soils under partially drained conditions. International Journal for Numerical and Analytical Methods in Geomechanics, 44(7), 1053–1076. https://doi.org/10.1002/nag.3050; Motaghedi, H., & Eslami, A. (2014). Analytical Approach for Determination of Soil Shear Strength Parameters from CPT and CPTu Data. Arabian Journal for Science and Engineering, 39(6), 4363–4376. https://doi.org/10.1007/s13369-014-1022-x; Norwegian Geotechnical Institute. (2019). CPTU CORRELATIONS FOR CLAYS.; R (3.6.1). (2019). R for Statistical Computing, Multiplataforma (Windows), R Development Core Team. Obtenido de https://www.r-project.org/; Robertson, P. (2016). Cone penetration test (CPT)-based soil behaviour type (SBT) classification system — An update. Canadian Geotechnical Journal, 53(12), 1910–1927. https://doi.org/10.1139/cgj-2016-0044; Robertson, P., & Cabal, K. (2010). Estimating soil unit weight from CPT. In 2nd International Symposium on Cone Penetration Testing, May, 2–40, Vol 2, 575-583.; Robertson, P., & Cabal, K. (2015). Guide to Cone Penetration Testing (6th Edition). Gregg Drilling & Testing, Inc. www.greggdrilling.com; Robertson, P. K. (2009). Interpretation of cone penetration tests - A unified approach. Canadian Geotechnical Journal, 46(11), 1337–1355. https://doi.org/10.1139/T09-065; Robertson, P. K., Campanella, R. G., Gillespie, D., & Rice, A. (1986). Seismic CPT to measure in situ shear wave velocity. Journal of Geotechnical Engineering, 112(8), 791–803. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:8(791); Robertson, P. K. (2010). Soil behaviour type from the CPT: an update. In 2nd International Symposium on Cone Penetration Testing, 2(May), Vol 2, 575–583.; Schervish, M. J. (1996). P values: What they are and what they are not. American Statistician, 50(3), 203–206. https://doi.org/10.1080/00031305.1996.10474380; Senneset, K., Sandven, R., & Janbu, N. (1989). Evaluation of soil parameters from piezocone tests. Transportation Research Record, 1235, 24–37.; Torres, V., Vandenberghe, J., & Hooghiemstra, H. (2005). An environmental reconstruction of the sediment infill of the Bogotá basin (Colombia) during the last 3 million years from abiotic and biotic proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 226(1–2), 127–148. https://doi.org/10.1016/j.palaeo.2005.05.005; Troncoso, P. (2018). Evaluación del método de medición del perfil de velocidad de ondas de corte SPT-sísmico. Universidad de Concepción.; Vardon, P. J., Baltoukas, D., & Peuchen, J. (2018). Thermal Cone Penetration Test (T-CPT). Cone Penetration Testing 2018 - Proceedings of the 4th International Symposium on Cone Penetration Testing, CPT 2018, June, 649–655.; Vardon, P. J., Baltoukas, D., & Peuchen, J. (2019). Interpreting and validating the thermal cone penetration test (T-CPT). Geotechnique, 69(7), 580–592. https://doi.org/10.1680/jgeot.17.P.214; Wasserstein, R. L., & Lazar, N. A. (2016). The ASA’s Statement on p-Values: Context, Process, and Purpose. American Statistician, 70(2), 129–133. https://doi.org/10.1080/00031305.2016.1154108; https://repositorio.unal.edu.co/handle/unal/79677; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
7
المؤلفون: Cristian Godoy, Lenart González, Esteban Sáez
المصدر: Obras y proyectos n.17 2015
SciELO Chile
CONICYT Chile
instacron:CONICYT
Obras y proyectos, Issue: 17, Pages: 61-67, Published: JUN 2015مصطلحات موضوعية: equivalent-linear method, período predominante, site response, Materials Chemistry, respuesta de sitio, shear wave velocity, método lineal-equivalente, predominant period, velocidad de onda de corte
وصف الملف: text/html
-
8
المصدر: Tecnura, Volume: 21, Issue: 51, Pages: 67-80, Published: 30 JAN 2017
Tecnura, Vol 21, Iss 51, Pp 67-80 (2017)مصطلحات موضوعية: lcsh:T, liquefaction, arenas sueltas, densificación con explosivos, licuación, mejoramiento de suelos, velocidad de onda de corte, licuación, mejoramiento de suelos, lcsh:Technology, arenas sueltas, blast densification, soil improvement, lcsh:TA1-2040, densificación con explosivos, shear wave velocity, lcsh:Engineering (General). Civil engineering (General), Loose sands, velocidad de onda de corte
وصف الملف: text/html
-
9
المؤلفون: Gómez Ramírez, Daniela, Tobón Ángel, Daniela
المساهمون: Sáenz Mateus, Edgar Alland
مصطلحات موضوعية: Wave propagation, Correlaciones cuantitativas, Velocidad de onda de corte, ESTRATIGRAFÍA, Correlaciones cualitativas, GEOFÍSICA, Parámetros geotectónicos, PROPAGACIÓN DE ONDAS, Geophysics, Geology, Stratigraphic, NSR-10 (Normas Colombianas de Diseño y Construcción Sismo-Resistente), Cohesion, ANÁLISIS DE REGRESIÓN, Regression analysis, COHESIÓN
وصف الملف: application/pdf
-
10
المصدر: Repositorio UdeA
Universidad de Antioquia
instacron:Universidad de Antioquiaمصطلحات موضوعية: Mejoramiento de suelos, Densificación con explosivos, Sand, Licuefacción, Soils, Arena, Velocidad de onda de corte, Suelos
وصف الملف: application/pdf
-
11
المؤلفون: Carvajal Gutiérrez, Dora Lucía
المساهمون: Jaramillo Fernández, Juan Diego
المصدر: Repositorio EAFIT
Universidad EAFIT
instacron:Universidad EAFITمصطلحات موضوعية: Soil mechanics, Wave propagation, Seismic waves, RESPUESTA DE FRECUENCIA (DINÁMICA), MECÁNICA DE SUELOS, Modelo Kelvin - Voigh, Frequency response (Dynamics), Velocidad de onda de corte, Período predominante, TEORÍA DE LAS ESTRUCTURAS (INGENIERÍA), ONDAS SÍSMICAS, PROPAGACIÓN DE ONDAS
وصف الملف: application/pdf
-
12Dissertation/ Thesis
المؤلفون: Rojas Cabrera, Erika Alexandra
المساهمون: Vázquez López, Benigno Alfredo
مصطلحات موضوعية: Ingeniería Civil, Correlación, Ondas superficiales, Velocidad de onda de corte, Resistencia a cortante, Ensayo triaxial, Ensayo de penetración estandar
وصف الملف: application/pdf; 77 páginas
Relation: TI;1107; http://dspace.ucuenca.edu.ec/handle/123456789/28581
-
13
المصدر: Scopus-Elsevier
Universidad Nacional Autónoma de México
UNAM
Redalyc-UNAM
Geofísica Internacional (México) Num.2 Vol.53مصطلحات موضوعية: Multivariate statistics, porosity, multivariate dependence, media_common.quotation_subject, permeabilidad, Permeability, Copula (probability theory), Physics::Geophysics, Bernstein copula, geostatistical simulation, Stochastic simulation, Covariate, Econometrics, Applied mathematics, Ciencias de la Tierra, Spatial dependence, simulación geoestadística, Normality, Mathematics, media_common, velocidad de onda de corte, Petrophysics, Nonparametric statistics, dependencia multivariada, porosidad, General Energy, Geophysics, shear wave velocity, cópula de Bernstein, permeability
وصف الملف: application/pdf
-
14Electronic Resource
مصطلحات الفهرس: Modelo Kelvin - Voigh, Velocidad de onda de corte, Período predominante, RESPUESTA DE FRECUENCIA (DINÁMICA), PROPAGACIÓN DE ONDAS, MECÁNICA DE SUELOS, TEORÍA DE LAS ESTRUCTURAS (INGENIERÍA), ONDAS SÍSMICAS, Frequency response (Dynamics), Wave propagation, Soil mechanics, Seismic waves, masterThesis, info:eu-repo/semantics/masterThesis, Tesis de Maestría, acceptedVersion
-
15Electronic Resource
مصطلحات الفهرس: NSR-10 (Normas Colombianas de Diseño y Construcción Sismo-Resistente), Velocidad de onda de corte, Correlaciones cualitativas, Correlaciones cuantitativas, Parámetros geotectónicos, COHESIÓN, ANÁLISIS DE REGRESIÓN, GEOFÍSICA, ESTRATIGRAFÍA, PROPAGACIÓN DE ONDAS, Cohesion, Regression analysis, Geophysics, Geology, Stratigraphic, Wave propagation, info:eu-repo/semantics/bachelorThesis, bachelorThesis, Trabajo de grado, acceptedVersion
-
16Electronic Resource