-
1Dissertation/ Thesis
المؤلفون: Sánchez Gonzaga, Vladimir Pablo
المساهمون: University/Department: Universitat Rovira i Virgili. Departament de Química Física i Inorgànica
Thesis Advisors: Cesteros Fernández, Yolanda, Salagre Carnero, María Pilar, González Candela, Maria Dolores
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: valorització de biomassa, catàlisi heterogènia, argiles, valorización de biomasa, catálisis heterogenea, arcillas, biomass valorization, heterogeneous catalysis, clays, Ciències
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/675978
-
2Academic Journal
المؤلفون: Serafín Perez Contreras, Ricardo Hernandez Martínez, Francisco Hernandez Rosas, Jose Andres Herrera Corredor, Elizabeth Del Carmen Varela Santos
المصدر: Tropical and Subtropical Agroecosystems, Vol 26, Iss 2 (2023)
مصطلحات موضوعية: agroindustria de la caña de azúcar, valorización de biomasa, fermentación en medio sólido, hidrólisis enzimática, bioprocesos., Agriculture, Agriculture (General), S1-972
وصف الملف: electronic resource
-
3Academic Journal
المؤلفون: Víctor Hugo Grisales-Díaz
المصدر: AiBi Revista de Investigación, Administración e Ingeniería, Vol 8, Iss 3 (2020)
مصطلحات موضوعية: reactores con recuperación in situ, valorización de biomasa, fermentación ABE, recirculación de biomasa, intensificación de procesos, Engineering (General). Civil engineering (General), TA1-2040
وصف الملف: electronic resource
-
4Academic Journal
المؤلفون: Rincón Rincón, Sahra Nathalíe
المساهمون: Guerrero Fajardo, Carlos Alberto, Aprovechamiento energético de recursos naturales - APRENA
مصطلحات موضوعية: 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales, Valorización de biomasa lignocelulósica, Residuos de tallos de rosas, Proceso organosolv, Biomasa, Combustibles vegetales, Lignocellulosic biomass valorization, Rose’s stalk waste, Organosolv process, Vegetable fuels, Biomass
وصف الملف: application/pdf
Relation: Abdelaziz, O. Y., Brink, D. P., Prothmann, J., Ravi, K., Sun, M., García-Hidalgo, J., … Gorwa-Grauslund, M. F. (2016). Biological valorization of low molecular weight lignin. Biotechnology Advances, 34(8), 1318–1346. https://doi.org/10.1016/j.biotechadv.2016.10.001; Alayoubi, R., Mehmood, N., Husson, E., Kouzayha, A., Tabcheh, M., Chaveriat, L., … Gosselin, I. (2020). Low temperature ionic liquid pretreatment of lignocellulosic biomass to enhance bioethanol yield. Renewable Energy, 145, 1808–1816. https://doi.org/10.1016/j.renene.2019.07.091; Alinia, R., Zabihi, S., Esmaeilzadeh, F., & Kalajahi, J. F. (2010). Pretreatment of wheat straw by supercritical CO2 and its enzymatic hydrolysis for sugar production. Biosystems Engineering, 107(1), 61–66. https://doi.org/10.1016/j.biosystemseng.2010.07.002; Amiri, H., Karimi, K., & Zilouei, H. (2014). Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production. Bioresource Technology, 152, 450–456. https://doi.org/10.1016/j.biortech.2013.11.038; An, S., Li, W., Liu, Q., Xia, Y., Zhang, T., Huang, F., … Chen, L. (2019). Combined dilute hydrochloric acid and alkaline wet oxidation pretreatment to improve sugar recovery of corn stover. Bioresource Technology, 271(August 2018), 283–288. https://doi.org/10.1016/j.biortech.2018.09.126; Arévalo Celis, L. del P. (2006). Implementación del código de conducta florverde en los niveles 1 y 2 de los programas de manejo de suelos y residuos en Flores San Juan S.A.,C.I.; Asadi, N., & Zilouei, H. (2017). Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes. Bioresource Technology, 227, 335–344. https://doi.org/10.1016/j.biortech.2016.12.073; Asociación Colombiana de Exportadores de Flores. (2010). Reporte GRI Global Reporting Initiative del sector floricultor colombiano asociado en Asocolflores. Retrieved from http://cecodes.org.co/reportes/archivos/asocolflores/ReporteGRIAsocolflores.pdf; Asociación Colombiana de Exportadores de Flores. (2018). Boletín estadístico Enero 2018. Bogotá D.C.; Asociación Colombiana de Exportadores de Flores. (2019). Boletín de exportación de flores cortadas enero - junio 2019. Retrieved from https://asocolflores.org/es/ya-se-encuentran-disponibles-los-boletines-a-junio-2019/; ASTM INTERNATIONAL. (2013). Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels (Vol. 1998). https://doi.org/10.1520/E0872-82R13.2; Banerjee, S., Sen, R., Pandey, R. A., Chakrabarti, T., Satpute, D., Giri, B. S., & Mudliar, S. (2009). Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization. Biomass and Bioenergy, 33(12), 1680–1686. https://doi.org/10.1016/j.biombioe.2009.09.001; Bär, J., Phongpreecha, T., Singh, S. K., Kral Yilmaz, M., Foster, C. E., Crowe, J. D., & Hodge, D. B. (2018). Deconstruction of hybrid poplar to monomeric sugars and aromatics using ethanol organosolv fractionation. Biomass Conversion and Biorefinery, 8(4), 813–824. https://doi.org/10.1007/s13399-018-0330-x; Bensah, E. C., Kádár, Z., & Mensah, M. Y. (2019). Alkali and glycerol pretreatment of West African biomass for production of sugars and ethanol. Bioresource Technology Reports, 6(January), 123–130. https://doi.org/10.1016/j.biteb.2019.02.013; Borand, M. N., & Karaosmanoǧlu, F. (2018). Effects of organosolv pretreatment conditions for lignocellulosic biomass in biorefinery applications: A review. Journal of Renewable and Sustainable Energy, 10(3), 033104. https://doi.org/10.1063/1.5025876; Brosse, N., Hazwan Hussin, M., & Abdul Rahim, A. (2017). Organosolv Processes. In Advances in biochemical engineering/biotechnology (Vol. 166, pp. 153–176). https://doi.org/10.1007/10; Cai, D., Li, P., Luo, Z., Qin, P., Chen, C., Wang, Y., … Tan, T. (2016). Effect of dilute alkaline pretreatment on the conversion of different parts of corn stalk to fermentable sugars and its application in acetone-butanol-ethanol fermentation. Bioresource Technology, 211, 117–124. https://doi.org/10.1016/j.biortech.2016.03.076; Chang, K. L., Thitikorn-amorn, J., Hsieh, J. F., Ou, B. M., Chen, S. H., Ratanakhanokchai, K., … Chen, S. T. (2011). Enhanced enzymatic conversion with freeze pretreatment of rice straw. Biomass and Bioenergy, 35(1), 90–95. https://doi.org/10.1016/j.biombioe.2010.08.027; Chávez-Sifontes, M. (2019). La biomasa: fuente alternativa de combustibles y compuestos químicos. Anales de Química - RSEQ, 115(5), 399–407. Retrieved from http://analesdequimica.com/115-5/1155-chavez.pdf; Cheng, J., Su, H., Zhou, J., Song, W., & Cen, K. (2011). Microwave-assisted alkali pretreatment of rice straw to promote enzymatic hydrolysis and hydrogen production in dark- and photo-fermentation. International Journal of Hydrogen Energy, 36(3), 2093–2101. https://doi.org/10.1016/j.ijhydene.2010.11.021; Choi, J. H., Jang, S. K., Kim, J. H., Park, S. Y., Kim, J. C., Jeong, H., … Choi, I. G. (2019). Simultaneous production of glucose, furfural, and ethanol organosolv lignin for total utilization of high recalcitrant biomass by organosolv pretreatment. Renewable Energy, 130, 952–960. https://doi.org/10.1016/j.renene.2018.05.052; Chundawat, S. P. S., Chang, L., Gunawan, C., Balan, V., McMahan, C., & Dale, B. E. (2012). Guayule as a feedstock for lignocellulosic biorefineries using ammonia fiber expansion (AFEX) pretreatment. Industrial Crops and Products, 37(1), 486–492. https://doi.org/10.1016/j.indcrop.2011.07.025; Cybulska, I., Brudecki, G. P., Zembrzuska, J., Schmidt, J. E., Lopez, C. G. B., & Thomsen, M. H. (2017). Organosolv delignification of agricultural residues (date palm fronds, Phoenix dactylifera L.) of the United Arab Emirates. Applied Energy, 185, 1040–1050. https://doi.org/10.1016/j.apenergy.2016.01.094; Dahunsi, S. O., Adesulu-Dahunsi, A. T., Osueke, C. O., Lawal, A. I., Olayanju, T. M. A., Ojediran, J. O., & Izebere, J. O. (2019). Biogas generation from Sorghum bicolor stalk: Effect of pretreatment methods and economic feasibility. Energy Reports, 5, 584–593. https://doi.org/10.1016/j.egyr.2019.04.002; de la Torre, M. J., Moral, A., Hernandez, D. M., Cabeza, E., & Tijero, A. (2013). Organosolv lignin for biofuel. Industrial Crops & Products, 45, 58–63. https://doi.org/10.1016/j.indcrop.2012.12.002; Ebrahimi, M., Villaflores, O. B., Ordono, E. E., & Caparanga, A. R. (2017). Effects of acidified aqueous glycerol and glycerol carbonate pretreatment of rice husk on the enzymatic digestibility, structural characteristics, and bioethanol production. Bioresource Technology, 228, 264–271. https://doi.org/10.1016/j.biortech.2016.12.106; El Hage, R., Brosse, N., Sannigrahi, P., & Ragauskas, A. (2010). Effects of process severity on the chemical structure of Miscanthus ethanol organosolv lignin. Polymer Degradation and Stability, 95(6), 997–1003. https://doi.org/10.1016/j.polymdegradstab.2010.03.012; Ferreira, J. A., & Taherzadeh, M. J. (2020). Improving the economy of lignocellulose-based biorefineries with organosolv pretreatment. Bioresource Technology, 299(December 2019), 122695. https://doi.org/10.1016/j.biortech.2019.122695; Figueiredo, P., Lintinen, K., Hirvonen, J. T., Kostiainen, M. A., & Santos, H. A. (2018). Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Progress in Materials Science, 93, 233–269. https://doi.org/10.1016/j.pmatsci.2017.12.001; Gírio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S., & Bogel-Łukasik, R. (2010). Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 101(13), 4775–4800. https://doi.org/10.1016/j.biortech.2010.01.088; Goh, C. S., Tan, H. T., Lee, K. T., & Brosse, N. (2011). Evaluation and optimization of organosolv pretreatment using combined severity factors and response surface methodology. Biomass and Bioenergy, 35(9), 4025–4033. https://doi.org/10.1016/j.biombioe.2011.06.034; Haghighi Mood, S., Hossein Golfeshan, A., Tabatabaei, M., Salehi Jouzani, G., Najafi, G. H., Gholami, M., & Ardjmand, M. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, 27, 77–93. https://doi.org/10.1016/j.rser.2013.06.033; Hames, B., Ruiz, R., Scarlata, C., Sluiter, A., Sluiter, J., & Templeton, D. (2008). Preparation of Samples for Compositional Analysis. Golden, Colorado.; Hesami, S. M., Zilouei, H., Karimi, K., & Asadinezhad, A. (2015). Enhanced biogas production from sunflower stalks using hydrothermal and organosolv pretreatment. Industrial Crops and Products, 76, 449–455. https://doi.org/10.1016/j.indcrop.2015.07.018; Hochegger, M., Cottyn-Boitte, B., Cézard, L., Schober, S., & Mittelbach, M. (2019). Influence of Ethanol Organosolv Pulping Conditions on Physicochemical Lignin Properties of European Larch. International Journal of Chemical Engineering, 2019, 10 pages. https://doi.org/10.1155/2019/1734507; Hu, H., Zhang, Y., Liu, X., Huang, Z., Chen, Y., Yang, M., … Feng, Z. (2014). Structural changes and enhanced accessibility of natural cellulose pretreated by mechanical activation. Polymer Bulletin, 71(2), 453–464. https://doi.org/10.1007/s00289-013-1070-5; Jang, M. O., & Choi, G. (2018). Techno-economic analysis of butanol production from lignocellulosic biomass by concentrated acid pretreatment and hydrolysis plus continuous fermentation. Biochemical Engineering Journal, 134, 30–43. https://doi.org/10.1016/j.bej.2018.03.002; Jang, S. K., Kim, H. Y., Jeong, H. S., Kim, J. Y., Yeo, H., & Choi, I. G. (2016). Effect of ethanol organosolv pretreatment factors on enzymatic digestibility and ethanol organosolv lignin structure from Liriodendron tulipifera in specific combined severity factors. Renewable Energy, 87, 599–606. https://doi.org/10.1016/j.renene.2015.10.045; Jiang, Z., Zhao, P., & Hu, C. (2018). Controlling the cleavage of the inter- and intra-molecular linkages in lignocellulosic biomass for further biorefining: A review. Bioresource Technology, 256(January), 466–477. https://doi.org/10.1016/j.biortech.2018.02.061; Jing, Q., & Lu, X. (2007). Kinetics of non-catalyzed decomposition of D-xylose in high temperature liquid water. Chinese Journal of Chemical Engineering, 15(5), 666–669. https://doi.org/10.1016/s1004-9541(07)60143-8; Joffres, B., Laurenti, D., Charon, N., Daudin, A., Quignard, A., & Geantet, C. (2013). Thermochemical Conversion of Lignin for Fuels and Chemicals: A Review. Oil and Gas Science and Technology, 68(4), 753–763. https://doi.org/10.2516/ogst/2013132; Karunanithy, C., & Muthukumarappan, K. (2011). Optimization of alkali soaking and extrusion pretreatment of prairie cord grass for maximum sugar recovery by enzymatic hydrolysis. Biochemical Engineering Journal, 54(2), 71–82. https://doi.org/10.1016/j.bej.2011.02.001; Kataria, R., Mol, A., Schulten, E., Happel, A., & Mussatto, S. I. (2017). Bench scale steam explosion pretreatment of acid impregnated elephant grass biomass and its impacts on biomass composition, structure and hydrolysis. Industrial Crops and Products, 106, 48–58. https://doi.org/10.1016/j.indcrop.2016.08.050; Kim, D. E., & Pan, X. (2010). Preliminary study on converting hybrid poplar to high-value chemicals and lignin using organosolv ethanol process. Industrial and Engineering Chemistry Research, 49(23), 12156–12163. https://doi.org/10.1021/ie101671r; Kim, H. Y., Jeong, H. S., Lee, S. Y., Choi, J. W., & Choi, I. G. (2015). Pd-catalyst assisted organosolv pretreatment to isolate ethanol organosolv lignin retaining compatible characteristics for producing phenolic monomer. Fuel, 153, 40–47. https://doi.org/10.1016/j.fuel.2015.02.102; Kim, J. S., Lee, Y. Y., & Kim, T. H. (2016). A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology, 199, 42–48. https://doi.org/10.1016/j.biortech.2015.08.085; Klemm, D., Heublein, B., Fink, H.-P., & Bohn, A. (2005). Cellulose : Fascinating Biopolymer and Sustainable Raw Material. Angewandte Chemie, 44, 3358–3393. https://doi.org/10.1002/anie.200460587; Koo, B. W., Park, N., Jeong, H. S., Choi, J. W., Yeo, H., & Choi, I. G. (2011). Characterization of by-products from organosolv pretreatments of yellow poplar wood (Liriodendron tulipifera) in the presence of acid and alkali catalysts. Journal of Industrial and Engineering Chemistry, 17(1), 18–24. https://doi.org/10.1016/j.jiec.2010.10.003; Kumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresources and Bioprocessing, 4(1). https://doi.org/10.1186/s40643-017-0137-9; Kumari, D., & Singh, R. (2018). Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renewable and Sustainable Energy Reviews, 90(May 2017), 877–891. https://doi.org/10.1016/j.rser.2018.03.111; Larran, A., Jozami, E., Vicario, L., Feldman, S. R., Podestá, F. E., & Permingeat, H. R. (2015). Evaluation of biological pretreatments to increase the efficiency of the saccharification process using Spartina argentinensis as a biomass resource. Bioresource Technology, 194, 320–325. https://doi.org/10.1016/j.biortech.2015.06.150; Lee, H. R., Lee, H. W., Lee, Y. W., Kazlauskas, R. J., & Park, T. H. (2017). Improved pretreatment of yellow poplar biomass using hot compressed water and enzymatically-generated peracetic acid. Biomass and Bioenergy, 105, 190–196. https://doi.org/10.1016/j.biombioe.2017.07.004; Lee, J. M., Jameel, H., & Venditti, R. A. (2010). A comparison of the autohydrolysis and ammonia fiber explosion (AFEX) pretreatments on the subsequent enzymatic hydrolysis of coastal Bermuda grass. Bioresource Technology, 101(14), 5449–5458. https://doi.org/10.1016/j.biortech.2010.02.055; Lenihan, P., Orozco, A., O’Neill, E., Ahmad, M. N. M., Rooney, D. W., & Walker, G. M. (2010). Dilute acid hydrolysis of lignocellulosic biomass. Chemical Engineering Journal, 156(2), 395–403. https://doi.org/10.1016/j.cej.2009.10.061; Li, M.-F., Sun, S.-N., Xu, F., & Sun, R.-C. (2012). Organosolv Fractionation of Lignocelluloses for Fuels, Chemicals and Materials: A Biorefinery Processing Perspective. In Biomass Conversion: The Interface of Biotechnology, Chemistry and Materials Science (Vol. 9783642284, pp. 341–379). https://doi.org/10.1007/978-3-642-28418-2; Li, M. F., Yang, S., & Sun, R. C. (2016). Recent advances in alcohol and organic acid fractionation of lignocellulosic biomass. Bioresource Technology, 200, 971–980. https://doi.org/10.1016/j.biortech.2015.10.004; Lizasoain, J., Rincón, M., Theuretzbacher, F., Enguídanos, R., Nielsen, P. J., Potthast, A., … Bauer, A. (2016). Biogas production from reed biomass: Effect of pretreatment using different steam explosion conditions. Biomass and Bioenergy, 95, 84–91. https://doi.org/10.1016/j.biombioe.2016.09.021; Ma, H., Liu, W. W., Chen, X., Wu, Y. J., & Yu, Z. L. (2009). Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresource Technology, 100(3), 1279–1284. https://doi.org/10.1016/j.biortech.2008.08.045; Martín-Sampedro, R., Santos, J. I., Fillat, Ú., Wicklein, B., Eugenio, M. E., & Ibarra, D. (2019). Characterization of lignins from Populus alba L. generated as by-products in different transformation processes: Kraft pulping, organosolv and acid hydrolysis. International Journal of Biological Macromolecules, 126, 18–29. https://doi.org/10.1016/j.ijbiomac.2018.12.158; McDonough, T. (1993). The chemistry of organosolv delignification. TAPPI Journal, 76, 186–193.; McMillan, J. D. (1994). Pretreatment of Lignocellulosic Biomass. In Enzymatic Conversion of Biomass for Fuels Production (pp. 292–324). https://doi.org/10.1021/bk-1994-0566.ch015; Meng, X., Bhagia, S., Wang, Y., Zhou, Y., Pu, Y., Dunlap, J. R., … Yoo, C. G. (2020). Effects of the advanced organosolv pretreatment strategies on structural properties of woody biomass. Industrial Crops and Products, 146(August 2019), 112144. https://doi.org/10.1016/j.indcrop.2020.112144; Michelin, M., Liebentritt, S., Vicente, A. A., & Teixeira, J. A. (2018). Lignin from an integrated process consisting of liquid hot water and ethanol organosolv: Physicochemical and antioxidant properties. International Journal of Biological Macromolecules, 120, 159–169. https://doi.org/10.1016/j.ijbiomac.2018.08.046; Miles-Barrett, D. M., Neal, A. R., Hand, C., Montgomery, J. R. D., Panovic, I., Ojo, O. S., … Westwood, N. J. (2016). The synthesis and analysis of lignin-bound Hibbert ketone structures in technical lignins. Organic and Biomolecular Chemistry, 14(42), 10023–10030. https://doi.org/10.1039/c6ob01915c; Mittal, A., Chatterjee, S. G., Scott, G. M., & Amidon, T. E. (2009). Modeling xylan solubilization during autohydrolysis of sugar maple and aspen wood chips: Reaction kinetics and mass transfer. Chemical Engineering Science, 64(13), 3031–3041. https://doi.org/10.1016/j.ces.2009.03.011; Montané, D., Salvadó, J., Torras, C., & Farriol, X. (2002). High-temperature dilute-acid hydrolysis of olive stones for furfural production. Biomass and Bioenergy, 22(4), 295–304. https://doi.org/10.1016/S0961-9534(02)00007-7; Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941–3994. https://doi.org/10.1039/c0cs00108b; Morales De La Rosa, S. (2015). Hidrólisis ácida de celulosa y biomasa lignocelulósica asistida con líquidos iónicos (Universidad Autónoma de Madrid). Retrieved from http://digital.csic.es/bitstream/10261/132717/1/morales_de_la_rosa_silvia.pdf; Morone, A., Apte, M., & Pandey, R. A. (2015). Levulinic acid production from renewable waste resources: Bottlenecks, potential remedies, advancements and applications. Renewable and Sustainable Energy Reviews, 51, 548–565. https://doi.org/10.1016Zj/rser.2015.06.032; Mou, H., & Wu, S. (2016). Comparison of organosolv and hydrotropic pretreatments of eucalyptus for enhancing enzymatic saccharification. Bioresource Technology, 220, 637–640. https://doi.org/10.1016/j.biortech.2016.08.072; Mulakhudair, A. R., Hanotu, J., & Zimmerman, W. (2017). Exploiting ozonolysis-microbe synergy for biomass processing: Application in lignocellulosic biomass pretreatment. Biomass and Bioenergy, 105, 147–154. https://doi.org/10.1016/j.biombioe.2017.06.018; Muurinen, E. (2000). Organosolv pulping- a review and distillation study related to peroxyacid pulping. https://doi.org/10.1016/0960-8524(91)90105-S; Ni, Y., & Hu, Q. (1995). Alcell® lignin solubility in ethanol–water mixtures. Journal of Applied Polymer Science, 57(12), 1441–1446. https://doi.org/10.1002/app.1995.070571203; Orduña Ortega, J., Mora Vargas, J. A., Perrone, O. M., Metzker, G., Gomes, E., da Silva, R., & Boscolo, M. (2020). Soaking and ozonolysis pretreatment of sugarcane straw for the production of fermentable sugars. Industrial Crops and Products, 145(October 2019), 111959. https://doi.org/10.1016/j.indcrop.2019.111959; Organization of the Petroleum Exporting Countries. (2019). World oil outlook 2040.; Orozco, A., Ahmad, M., Rooney, D., & Walker, G. (2007). Dilute acid hydrolysis of cellulose and cellulosic bio-waste using a microwave reactor system. Process Safety and Environmental Protection, 85(5 B), 446–449. https://doi.org/10.1205/psep07003; Ostovareh, S., Karimi, K., & Zamani, A. (2015). Efficient conversion of sweet sorghum stalks to biogas and ethanol using organosolv pretreatment. Industrial Crops and Products, 66(1), 170–177. https://doi.org/10.1016/j.indcrop.2014.12.023; Pan, X., Gilkes, N., Kadla, J., Pye, K., Saka, S., Gregg, D., … Saddler, J. (2006). Bioconversion of Hybrid Poplar to Ethanol and Co-Products Using an Organosolv Fractionation Process: Optimization of Process Yields. Biotechnology and Bioengineering, 94(5), 851–861. https://doi.org/10.1002/bit.20905; Pan, X., Xie, D., Yu, R. W., Lam, D., & Saddler, J. N. (2007). Pretreatment of lodgepole pine killed by mountain pine beetle using the ethanol organosolv process: Fractionation and process optimization. Industrial and Engineering Chemistry Research, 46(8), 2609–2617. https://doi.org/10.1021/ie061576l; Pan, X., Xie, D., Yu, R. W., & Saddler, J. N. (2008). The bioconversion of mountain pine beetle-killed lodgepole pine to fuel ethanol using the organosolv process. Biotechnology and Bioengineering, 101(1), 39–48. https://doi.org/10.1002/bit.21883; Park, Y. C., & Kim, J. S. (2012). Comparison of various alkaline pretreatment methods of lignocellulosic biomass. Energy, 47(1), 31–35. https://doi.org/10.1016/j.energy.2012.08.010; Parlamento Europeo y Consejo de la Unión Europea. Directiva 2009/28/CE del Parlamento Europeo y del Consejo de 23 de abril de 2009. , Diario Oficial de la Unión Europea § (2009).; Pereira, L., Alves, L., Marabezi, K., & Da Silva, A. (2011). Delignification of sugarcane bagasse using glycerol – water mixtures to produce pulps for saccharification. 102, 10040–10046. https://doi.org/10.1016/j.biortech.2011.08.050; Pérez Jiménez, J. A. (2008). Estudio del pretratamiento con agua caliente en fase líquida de la paja de trigo para su conversión biológica a etanol. Universidad de Jaén.; Poletto, M., Pistor, V., & Zattera, A. J. (2013). Structural Characteristics and Thermal Properties of Native Cellulose. Intech, 25. https://doi.org/http://dx.doi.org/10.5772/50452; Procolombia. (2019). ¿Cómo funciona el sector floricultor en Colombia? Retrieved from https://www.colombiatrade.com.co/noticias/como-funciona-el-sector-floricultor-en-colombia#; Pronyk, C., & Mazza, G. (2010). Kinetic modeling of hemicellulose hydrolysis from triticale straw in a pressurized low polarity water flow-through reactor. Industrial and Engineering Chemistry Research, 49(14), 6367–6375. https://doi.org/10.1021/ie1003625; Quesada-Medina, J., López-Cremades, F. J., & Olivares-Carrillo, P. (2010). Organosolv extraction of lignin from hydrolyzed almond shells and application of the δ-value theory. Bioresource Technology, 101(21), 8252–8260. https://doi.org/10.1016/j.biortech.2010.06.011; Quevedo Hidalgo, B. E. (2011). Evaluación de la degradación de residuos de floricultura para la obtención de azúcares con el uso de tres hongos lignocelulolíticos. Universidad Nacional de Colombia.; Ravindran, R., & Jaiswal, A. K. (2016). A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: Challenges and opportunities. Bioresource Technology, 199, 92–102. https://doi.org/10.1016/j.biortech.2015.07.106; Romaní, A., Ruiz, H. A., Pereira, F. B., Domingues, L., & Teixeira, J. A. (2013). Fractionation of Eucalyptus globulus Wood by Glycerol−Water Pretreatmen: Optimization and Modeling. Industrial and Engineering Chemistry Research, 52, 14342–14352. https://doi.org/dx.doi.org/10.1021/ie402177f; Romaní, A., Ruiz, H. A., Teixeira, J. A., & Domingues, L. (2016). Valorization of Eucalyptus wood by glycerol-organosolv pretreatment within the biorefinery concept: An integrated and intensified approach. Renewable Energy, 95, 1–9. https://doi.org/10.1016/j.renene.2016.03.106; Romero, I., Ruiz, E., Castro, E., & Moya, M. (2010). Acid hydrolysis of olive tree biomass. Chemical Engineering Research and Design, 88(5–6), 633–640. https://doi.org/10.1016/j.cherd.2009.10.007; Salapa, I., Katsimpouras, C., Topakas, E., & Sidiras, D. (2017). Organosolv pretreatment of wheat straw for efficient ethanol production using various solvents. Biomass and Bioenergy, 100, 10–16. https://doi.org/10.1016/j.biombioe.2017.03.011; Sannigrahi, P., & Ragauskas, A. J. (2013). Fundamentals of Biomass Pretreatment by Fractionation. Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals, 201–222. https://doi.org/10.1002/9780470975831.ch10; Scheller, H. V., & Ulvskov, P. (2010). Hemicelluloses. Annual Review Of Plant Biology, 61, 263–289. https://doi.org/10.1146/annurev-arplant-042809-112315; Schmetz, Q., Maniet, G., Jacquet, N., Teramura, H., Ogino, C., Kondo, A., & Richel, A. (2016). Comprehension of an organosolv process for lignin extraction on Festuca arundinacea and monitoring of the cellulose degradation. Industrial Crops and Products, 94, 308–317. https://doi.org/10.1016/j.indcrop.2016.09.003; Schwiderski, M., Kruse, A., Grandl, R., & Dockendorf, D. (2014). Comparison of the influence of a Lewis acid AlCl3 and a Brønsted acid HCl on the organosolv pulping of beech wood. Green Chemistry, 16(3), 1569–1578. https://doi.org/10.1039/c3gc42050g; Semerci, I., & Güler, F. (2018). Protic ionic liquids as effective agents for pretreatment of cotton stalks at high biomass loading. Industrial Crops and Products, 125(August), 588–595. https://doi.org/10.1016/j.indcrop.2018.09.046; Shahabazuddin, M., Sarat Chandra, T., Meena, S., Sukumaran, R. K., Shetty, N. P., & Mudliar, S. N. (2018). Thermal assisted alkaline pretreatment of rice husk for enhanced biomass deconstruction and enzymatic saccharification: Physico-chemical and structural characterization. Bioresource Technology, 263(February), 199–206. https://doi.org/10.1016/j.biortech.2018.04.027; Sifontes, C. &, & Domine, M. E. (2013). Lignina, estructura y aplicaciones: métodos de despolimerización para la obtención de derivados aromáticos de interés industrial. Avances En Ciencias e Ingenería, 4(4), 15–46. https://doi.org/http://www.exeedu.com/publishing.cl/av_cienc_ing/2013/Vol4/Nro4/3-ACI1184-13-full.pdf; Singh, P., Suman, A., Tiwari, P., Arya, N., Gaur, A., & Shrivastava, A. K. (2008). Biological pretreatment of sugarcane trash for its conversion to fermentable sugars. World Journal of Microbiology and Biotechnology, 24(5), 667–673. https://doi.org/10.1007/s11274-007-9522-4; Singh, Y. D., Mahanta, P., & Bora, U. (2017). Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production. Renewable Energy, 103, 490–500. https://doi.org/10.1016/j.renene.2016.11.039; Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., … Wolfe, J. (2008). Determination of total solids in biomass and total dissolved solids in liquid process samples. In National Renewable Energy Laboratory (NREL). https://doi.org/NREL/TP-510-42621; Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of Ash in Biomass. In National Renewable Energy Laboratory (NREL). https://doi.org/NREL/TP-510-42619; Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2012). Determination of Structural Carbohydrates and Lignin in Biomass (Vol. 2011). https://doi.org/NREL/TP-510-42618; Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of Extractives in Biomass. In Technical Report NREL/TP-510-42619. https://doi.org/NREL/TP-510-42621; Sticklen, M. B. (2008). Plant genetic engineering for biofuel production: Towards affordable cellulosic ethanol. Nature Reviews Genetics, 9(6), 433–443. https://doi.org/10.1038/nrg2336; Studer, M. H., DeMartini, J. D., Davis, M. F., Sykes, R. W., Davison, B., Keller, M., … Wyman, C. E. (2011). Lignin content in natural populus variants affects sugar release. Proceedings of the National Academy of Sciences of the United States of America, 108(15), 6300–6305. https://doi.org/10.1073/pnas.1009252108; Sun, D., Sun, S. C., Wang, B., Sun, S. F., Shi, Q., Zheng, L., … Sun, R. C. (2020). Effect of various pretreatments on improving cellulose enzymatic digestibility of tobacco stalk and the structural features of co-produced hemicelluloses. Bioresource Technology, 297(October 2019), 122471. https://doi.org/10.1016/j.biortech.2019.122471; Sun, F. F., Wang, L., Hong, J., Ren, J., Du, F., Hu, J., … Zhou, B. (2015). The impact of glycerol organosolv pretreatment on the chemistry and enzymatic hydrolyzability of wheat straw. Bioresource Technology, 187, 354–361. https://doi.org/10.1016/j.biortech.2015.03.051; Teramoto, Y., Lee, S. H., & Endo, T. (2008). Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking. Bioresource Technology, 99(18), 8856–8863. https://doi.org/10.1016/j.biortech.2008.04.049; Thoresen, P. P., Matsakas, L., Rova, U., & Christakopoulos, P. (2020). Recent advances in organosolv fractionation: Towards biomass fractionation technology of the future. Bioresource Technology, 306(March), 123189. https://doi.org/10.1016/j.biortech.2020.123189; Tsegaye, B., Balomajumder, C., & Roy, P. (2020). Organosolv pretreatments of rice straw followed by microbial hydrolysis for efficient biofuel production. Renewable Energy, 148, 923–934. https://doi.org/10.1016/j.renene.2019.10.176; Unidad de Planeación Minero Energética. (2019). Plan Energetico Nacional 2020-2050. Retrieved from https://www1.upme.gov.co/Paginas/Plan-Energetico-Nacional-2050.aspx; Vallejos, M. E., Zambon, M. D., Area, M. C., & da silva Curvelo, A. A. (2015). Low liquid-solid ratio fractionation of sugarcane bagasse by hot water autohydrolysis and organosolv delignification. Industrial Crops and Products, 65, 349–353. https://doi.org/10.1016/j.indcrop.2014.11.018; Wang, B., Shen, X. J., Wen, J. L., Xiao, L., & Sun, R. C. (2017). Evaluation of organosolv pretreatment on the structural characteristics of lignin polymers and follow-up enzymatic hydrolysis of the substrates from Eucalyptus wood. International Journal of Biological Macromolecules, 97, 447–459. https://doi.org/10.1016/j.ijbiomac.2017.01.069; Weingarten, R., Cho, J., Conner, W. C., & Huber, G. W. (2010). Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating. Green Chemistry, 12(8), 1423–1429. https://doi.org/10.1039/c003459b; Wells, J. M., Drielak, E., Surendra, K. C., & Kumar Khanal, S. (2020). Hot water pretreatment of lignocellulosic biomass: Modeling the effects of temperature, enzyme and biomass loadings on sugar yield. Bioresource Technology, 300(December 2019), 122593. https://doi.org/10.1016/j.biortech.2019.122593; Wijaya, Y. P., Putra, R. D. D., Widyaya, V. T., Ha, J. M., Suh, D. J., & Kim, C. S. (2014). Comparative study on two-step concentrated acid hydrolysis for the extraction of sugars from lignocellulosic biomass. Bioresource Technology, 164, 221–231. https://doi.org/10.1016/j.biortech.2014.04.084; Xu, F., Sun, J. X., Sun, R., Fowler, P., & Baird, M. S. (2006). Comparative study of organosolv lignins from wheat straw. Industrial Crops and Products, 23(2), 180–193. https://doi.org/10.1016/j.indcrop.2005.05.008; Yáñez-S, M., Matsuhiro, B., Nuñez, C., Pan, S., Hubbell, C. A., Sannigrahi, P., & Ragauskas, A. J. (2014). Physicochemical characterization of ethanol organosolv lignin (EOL) from Eucalyptus globulus: Effect of extraction conditions on the molecular structure. Polymer Degradation and Stability, 110, 184–194. https://doi.org/10.1016/j.polymdegradstab.2014.08.026; Yang, B., & Wyman, C. E. (2008). Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 2, 26–40. https://doi.org/10.1002/bbb.49; Yoo, J., Alavi, S., Vadlani, P., & Amanor-Boadu, V. (2011). Thermo-mechanical extrusion pretreatment for conversion of soybean hulls to fermentable sugars. Bioresource Technology, 102(16), 7583–7590. https://doi.org/10.1016/j.biortech.2011.04.092; Yuan, X., Duan, Y., He, L., Singh, S., Simmons, B., & Cheng, G. (2017). Characterization of white poplar and eucalyptus after ionic liquid pretreatment as a function of biomass loading using X-ray diffraction and small angle neutron scattering. Bioresource Technology, 232, 113–118. https://doi.org/10.1016/j.biortech.2017.02.014; Zhang, K., Pei, Z., & Wang, D. (2016). Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review. Bioresource Technology, 199, 21–33. https://doi.org/10.1016/j.biortech.2015.08.102; Zhang, R., Lu, X., Sun, Y., Wang, X., & Zhang, S. (2011). Modeling and optimization of dilute nitric acid hydrolysis on corn stover. Journal of Chemical Technology and Biotechnology, 86(2), 306–314. https://doi.org/10.1002/jctb.2529; Zhang, Y. H. P. (2008). Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. Journal of Industrial Microbiology and Biotechnology, 35(5), 367–375. https://doi.org/10.1007/s10295-007-0293-6; Zhang, Z., Harrison, M. D., Rackemann, D. W., Doherty, W. O. S., & O’Hara, I. M. (2016). Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chemistry, 18(2), 360–381. https://doi.org/10.1039/c5gc02034d; Zhang, Z., Wong, H. H., Albertson, P. L., Doherty, W. O. S., & O’Hara, I. M. (2013). Laboratory and pilot scale pretreatment of sugarcane bagasse by acidified aqueous glycerol solutions. Bioresource Technology, 138, 14–21. https://doi.org/10.1016/j.biortech.2013.03.065; Zhao, M. jiao, Xu, Q. qin, Li, G. min, Zhang, Q. zhi, Zhou, D., Yin, J. zhong, & Zhan, H. shu. (2019). Pretreatment of agricultural residues by supercritical CO2 at 50–80 °C to enhance enzymatic hydrolysis. Journal of Energy Chemistry, 31, 39–45. https://doi.org/10.1016/j.jechem.2018.05.003; Zhao, X., Li, S., Wu, R., & Liu, D. (2017). Organosolv fractionating pre-treatment of lignocellulosic biomass for efficient enzymatic saccharification: chemistry, kinetics, and substrate structures. Biofuels, Bioproducts and Biorefining, 11, 567–590. https://doi.org/10.1002/bbb.1768; Zhao, X., Zhou, Y., & Liu, D. (2012). Kinetic model for glycan hydrolysis and formation of monosaccharides during dilute acid hydrolysis of sugarcane bagasse. Bioresource Technology, 105, 160–168. https://doi.org/10.1016/j.biortech.2011.11.075; Zhou, Z., Lei, F., Li, P., & Jiang, J. (2018). Lignocellulosic biomass to biofuels and biochemicals: A comprehensive review with a focus on ethanol organosolv pretreatment technology. Biotechnology and Bioengineering, 115(11), 2683–2702. https://doi.org/10.1002/bit.26788; Zhu, J. Y., Wang, G. S., Pan, X. J., & Gleisner, R. (2009). Specific surface to evaluate the efficiencies of milling and pretreatment of wood for enzymatic saccharification. Chemical Engineering Science, 64(3), 474–485. https://doi.org/10.1016/j.ces.2008.09.026; https://repositorio.unal.edu.co/handle/unal/78589
-
5Academic Journal
المؤلفون: Sanchez, Astrid, Velasquez, Mauricio, Batiot-Dupeyrat, Catherine, Espinal, Juan F., Santamaría, Alexander
المصدر: DYNA; Vol. 86 No. 208 (2019): January - March; 126-135 ; DYNA; Vol. 86 Núm. 208 (2019): Enero - Marzo; 126-135 ; 2346-2183 ; 0012-7353
مصطلحات موضوعية: hydroxyacetone formation mechanism, glycerol dehydration, glycerol dehydrogenation, glycerol conversion, biomass valorization, mecanismo de formación de hidroxiacetona, deshidratación de glicerol, deshidrogenación de glicerol, conversión de glicerol, valorización de biomasa
وصف الملف: application/pdf; text/xml
-
6
المؤلفون: Giannakoudakis, Dimitrios A., Qayyum, Abdul, Barczak, Mariusz, Colmenares Quintero, Ramón Fernando, Borowski, Piotr, Triantafyllidis, Konstantinos, Colmenares, Juan Carlos
مصطلحات موضوعية: Valorización de biomasa, Fotocatálisis, Oxidación de alcohol bencílico, Benzaldehído, Nanomateriales de TiO2, Nanotubos de titanato, Biomass valorization, Photocatalysis, Benzyl alcohol oxidation, Benzaldehyde, TiO2 nanomaterials, Titanate nanotubes
وصف الملف: 1 - 16; application/pdf
Relation: https://www.sciencedirect.com/science/article/pii/S0926337322008803?via%3Dihub#ab0010; Applied Catalysis B: Environmental; C.-H. Zhou, X. Xia, C.-X. Lin, D.-S. Tong, J. Beltramini, Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels, Chem. Soc. Rev. 40 (2011) 5588–5617, https://doi.org/10.1039/C1CS15124J.; V. Nair, M.J. Munoz-Batista, ˜ M. Fernandez-García, ´ R. Luque, J.C. Colmenares, Thermo-photocatalysis: environmental and energy applications, ChemSusChem 12 (2019) 2098–2116, https://doi.org/10.1002/cssc.201900175.; M. Garedew, F. Lin, B. Song, T.M. DeWinter, J.E. Jackson, C.M. Saffron, C.H. Lam, P.T. Anastas, Greener routes to biomass waste valorization: lignin transformation through electrocatalysis for renewable chemicals and fuels production, ChemSusChem 13 (2020) 4214–4237, https://doi.org/10.1002/cssc.202000987.; S.H. Li, S. Liu, J.C. Colmenares, Y.J. Xu, A sustainable approach for lignin valorization by heterogeneous photocatalysis, Green. Chem. 18 (2016) 594–607, https://doi.org/10.1039/c5gc02109j.; S. Kumaravel, P. Thiruvengetam, K. Karthick, S.S. Sankar, A. Karmakar, S. Kundu, Green and sustainable route for oxidative depolymerization of lignin: New platform for fine chemicals and fuels, Biotechnol. Prog. 37 (2021), https://doi.org/10.1002/ btpr.3111; P. Azadi, O.R. Inderwildi, R. Farnood, D.A. King, Liquid fuels, hydrogen and chemicals from lignin: A critical review, Renew. Sustain. Energy Rev. 21 (2013) 506–523, https://doi.org/10.1016/j.rser.2012.12.022.; C. Xiao, L. Zhang, H. Hao, W. Wang, High Selective Oxidation of Benzyl Alcohol to Benzylaldehyde and Benzoic Acid with Surface Oxygen Vacancies on W18O49/ Holey Ultrathin g-C3N4 Nanosheets, ACS Sustain. Chem. Eng. 7 (2019) 7268–7276, https://doi.org/10.1021/acssuschemeng.9b00299; C.M. Crombie, R.J. Lewis, R.L. Taylor, D.J. Morgan, T.E. Davies, A. Folli, D. M. Murphy, J.K. Edwards, J. Qi, H. Jiang, C.J. Kiely, X. Liu, M.S. Skjøth-Rasmussen, G.J. Hutchings, Enhanced Selective Oxidation of Benzyl Alcohol via in Situ H2O2Production over Supported Pd-Based Catalysts, ACS Catal. 11 (2021) 2701–2714, https://doi.org/10.1021/acscatal.0c04586.; X. Bao, H. Li, Z. Wang, F. Tong, M. Liu, Z. Zheng, P. Wang, H. Cheng, Y. Liu, Y. Dai, Y. Fan, Z. Li, B. Huang, TiO2/Ti3C2 as an efficient photocatalyst for selective oxidation of benzyl alcohol to benzaldehyde, Appl. Catal. B: Environ. 286 (2021), 119885, https://doi.org/10.1016/j.apcatb.2021.119885.; M.J. Lima, A.M.T. Silva, C.G. Silva, J.L. Faria, N.M. Reis, Selective photocatalytic synthesis of benzaldehyde in microcapillaries with immobilized carbon nitride, Chem. Eng. J. 430 (2022), https://doi.org/10.1016/j.cej.2021.132643.; A. Akhundi, A. Badiei, G.M. Ziarani, A. Habibi-Yangjeh, M.J. Munoz-Batista, ˜ R. Luque, Graphitic carbon nitride-based photocatalysts: Toward efficient organic transformation for value-added chemicals production, Mol. Catal. 488 (2020), 110902, https://doi.org/10.1016/j.mcat.2020.110902.; D.S.M. Constantino, M.M. Dias, A.M.T. Silva, J.L. Faria, C.G. Silva, Intensification strategies for improving the performance of photocatalytic processes: A review, J. Clean. Prod. 340 (2022), https://doi.org/10.1016/j.jclepro.2022.130800.; A.V. Vorontsov, P.G. Smirniotis. Environmentally Benign Photocatalysts: Applications of Titanium Oxide-based Materials, 1st ed.,, Springer,, New York, New York, 2010, https://doi.org/10.1007/978-0-387-48444-0.; C. Berberidou, G.Z. Kyzas, I. Paspaltsis, T. Sklaviadis, I. Poulios, Photocatalytic disinfection and purification of water employing reduced graphene oxide/TiO2 composites, J. Chem. Technol. Biotechnol. 94 (2019) 3905–3914, https://doi.org/ 10.1002/jctb.6188.; S. Peiris, H.B. de Silva, K.N. Ranasinghe, S.V. Bandara, I.R. Perera, Recent development and future prospects of TiO2 photocatalysis, J. Chin. Chem. Soc. 68 (2021) 738–769, https://doi.org/10.1002/jccs.202000465.; M.J. Lima, M.J. Sampaio, C.G. Silva, A.M.T. Silva, J.L. Faria, Magnetically recoverable Fe 3 O 4 /g-C 3 N 4 composite for photocatalytic production of benzaldehyde under UV-LED radiation, Catal. Today 328 (2019) 293–299, https:// doi.org/10.1016/j.cattod.2018.11.018.; J.F.J.R. Pesqueira, M.F.R. Pereira, A.M.T. Silva, A life cycle assessment of solarbased treatments (H2O2, TiO2 photocatalysis, circumneutral photo-Fenton) for the removal of organic micropollutants, Sci. Total Environ. 761 (2021), https://doi. org/10.1016/j.scitotenv.2020.143258.; D.A. Giannakoudakis, N. Farahmand, D. Łomot, K. Sobczak, T.J. Bandosz, J. C. Colmenares, Ultrasound-activated TiO2/GO-based bifunctional photoreactive adsorbents for detoxification of chemical warfare agent surrogate vapors, Chem. Eng. J. 395 (2020), 125099, https://doi.org/10.1016/j.cej.2020.125099.; D.A. Giannakoudakis, A. Qayyum, D. Łomot, M.O. Besenhard, D. Lisovytskiy, T. J. Bandosz, J.C. Colmenares, Boosting the Photoactivity of Grafted Titania: Ultrasound-Driven Synthesis of a Multi-Phase Heterogeneous Nano-Architected Photocatalyst, Adv. Funct. Mater. 31 (2021) 1–7, https://doi.org/10.1002/ adfm.202007115.; D.A. Giannakoudakis, K. Vikrant, A.P. LaGrow, D. Lisovytskiy, K.-H. Kim, T. J. Bandosz, J. Carlos Colmenares, Scrolled titanate nanosheet composites with reduced graphite oxide for photocatalytic and adsorptive removal of toxic vapors, Chem. Eng. J. 415 (2021), 128907, https://doi.org/10.1016/j.cej.2021.128907.; Y. Chen, S. Yang, K. Wang, L. Lou, Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7, J. Photochem. Photobiol. A: Chem. 172 (2005) 47–54, https://doi.org/10.1016/j. jphotochem.2004.11.006; S. Higashimoto, N. Suetsugu, M. Azuma, H. Ohue, Y. Sakata, Efficient and selective oxidation of benzylic alcohol by O2 into corresponding aldehydes on a TiO2 photocatalyst under visible light irradiation: Effect of phenyl-ring substitution on the photocatalytic activity, J. Catal. 274 (2010) 76–83, https://doi.org/10.1016/j. jcat.2010.06.006; L. Zhao, B. Zhang, X. Xiao, F.L. Gu, R.Q. Zhang, Roles of the active species involved in the photocatalytic oxidation of benzyl alcohol into benzaldehyde on TiO2 under UV light: Experimental and DFT studies, J. Mol. Catal. A: Chem. 420 (2016) 82–87, https://doi.org/10.1016/j.molcata.2016.03.012.; X. Li, J.L. Shi, H. Hao, X. Lang, Visible light-induced selective oxidation of alcohols with air by dye-sensitized TiO2 photocatalysis, Appl. Catal. B: Environ. 232 (2018) 260–267, https://doi.org/10.1016/j.apcatb.2018.03.043.; C.J. Li, G.R. Xu, B. Zhang, J.R. Gong, High selectivity in visible-light-driven partial photocatalytic oxidation of benzyl alcohol into benzaldehyde over singlecrystalline rutile TiO 2 nanorods, Appl. Catal. B: Environ. 115–116 (2012) 201–208, https://doi.org/10.1016/j.apcatb.2011.12.003.; R. Li, H. Kobayashi, J. Guo, J. Fan, Visible-light induced high-yielding benzyl alcohol-to-benzaldehyde transformation over mesoporous crystalline TiO2: A selfadjustable photo-oxidation system with controllable hole-generation, J. Phys. Chem. C. 115 (2011) 23408–23416, https://doi.org/10.1021/jp207259u.; C.Y. Wang, R. Pagel, J.K. Dohrmann, D.W. Bahnemann, Antenna mechanism and de-aggregation concept: Novel mechanistic principles for photocatalysis, Mater. Sci. Forum 544– 545 (2007) 17–22, https://doi.org/10.1016/j.crci.2005.02.053.; S. Higashimoto, N. Kitao, N. Yoshida, T. Sakura, M. Azuma, H. Ohue, Y. Sakata, Selective photocatalytic oxidation of benzyl alcohol and its derivatives into corresponding aldehydes by molecular oxygen on titanium dioxide under visible light irradiation, J. Catal. 266 (2009) 279–285, https://doi.org/10.1016/j. jcat.2009.06.018.; A. Magdziarz, J.C. Colmenares, O. Chernyayeva, D. Lisovytskiy, J. Grzonka, K. Kurzydłowski, K. Freindl, J. Korecki, Insight into the synthesis procedure of Fe3 +/TiO2-based photocatalyst applied in the selective photo-oxidation of benzyl alcohol under sun-imitating lamp, Ultrason. Sonochem. 38 (2017) 187–196, https://doi.org/10.1016/j.ultsonch.2017.03.012.; C.-Y. Wu, K.-J. Tu, J.-P. Deng, Y.-S. Lo, C.-H. Wu, Markedly Enhanced Surface Hydroxyl Groups of TiO2 Nanoparticles with Superior Water-Dispersibility for Photocatalysis, Materials 10 (2017) 566, https://doi.org/10.3390/ma10050566.; A. Khan, M. Goepel, A. Kubas, D. Łomot, W. Lisowski, D. Lisovytskiy, A. Nowicka, J.C. Colmenares, R. Gl¨ aser, Selective oxidation of 5-hydroxymethylfurfural to 2,5- diformylfuran by visible light-driven photocatalysis over in situ substratesensitized titania, ChemSusChem 14 (2021) 1351–1362, https://doi.org/10.1002/ cssc.202002687.; H. Kobayashi, S. Higashimoto, DFT study on the reaction mechanisms behind the catalytic oxidation of benzyl alcohol into benzaldehyde by O2 over anatase TiO2 surfaces with hydroxyl groups: role of visible-light irradiation, Appl. Catal. B: Environ. 170– 171 (2015) 135–143, https://doi.org/10.1016/j. apcatb.2015.01.035.; X. Yan, Y. Li, T. Xia, Black titanium dioxide nanomaterials in photocatalysis, Int. J. Photo 2017 (2017), https://doi.org/10.1155/2017/8529851.; A. Naldoni, M. Altomare, G. Zoppellaro, N. Liu, S. ˇ Kment, R. Zboˇril, P. Schmuki, Photocatalysis with reduced TiO 2: From Black TiO 2 to cocatalyst-free hydrogen production, ACS Catal. 9 (2019) 345–364, https://doi.org/10.1021/ acscatal.8b04068.; B. Ohtani, O.O. Prieto-Mahaney, D. Li, R. Abe, What is Degussa (Evonic) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test, J. Photochem. Photobiol. A: Chem. 216 (2010) 179–182, https://doi.org/10.1016/j.jphotochem.2010.07.024.; F. Parrino, M. Bellardita, E.I. García-Lopez, ´ G. Marcì, V. Loddo, L. Palmisano, Heterogeneous photocatalysis for selective formation of high-value-added molecules: some chemical and engineering aspects, ACS Catal. 8 (2018) 11191–11225, https://doi.org/10.1021/acscatal.8b03093.; V. Augugliaro, T. Caronna, V. Loddo, G. Marcì, G. Palmisano, L. Palmisano, S. Yurdakal, Oxidation of aromatic alcohols in irradiated aqueous suspensions of commercial and home-prepared rutile TiO2: A selectivity study, Chem. - A Eur. J. 14 (2008) 4640–4646, https://doi.org/10.1002/chem.200702044.; A.K. Datye, G. Riegel, J.R. Bolton, M. Huang, M.R. Prairie, Microstructural characterization of a fumed titanium dioxide photocatalyst, J. Solid State Chem. 115 (1995) 236–239, https://doi.org/10.1006/jssc.1995.1126.; D.A. Giannakoudakis, D. Łomot, J.C. Colmenares, When sonochemistry meets heterogeneous photocatalysis: designing a sonophotoreactor towards sustainable selective oxidation, Green. Chem. 22 (2020) 4896–4905, https://doi.org/10.1039/ D0GC00329H.; I. Velo-Gala, A. Torres-Pinto, C.G. Silva, B. Ohtani, A.M.T. Silva, J.L. Faria, Graphitic carbon nitride photocatalysis: The hydroperoxyl radical role revealed by kinetic modelling, Catal. Sci. Technol. 11 (2021) 7712–7726, https://doi.org/ 10.1039/d1cy01657a.; E. Kusmierek, A. CeO2, semiconductor as a photocatalytic and photoelectrocatalytic material for the remediation of pollutants in industrial wastewater: A review, Catalysts 10 (2020) 1–54, https://doi.org/10.3390/ catal10121435.; C. Zheng, G. He, X. Xiao, M. Lu, H. Zhong, X. Zuo, J. Nan, Selective photocatalytic oxidation of benzyl alcohol into benzaldehyde with high selectivity and conversion ratio over Bi4O5Br2 nanoflakes under blue LED irradiation, Appl. Catal. B: Environ. 205 (2017) 201–210, https://doi.org/10.1016/j.apcatb.2016.12.026.; G. Palmisano, G. Scandura, V. Augugliaro, V. Loddo, A. Pace, B.S. Tek, S. Yurdakal, L. Palmisano, Unexpectedly ambivalent O2 role in the autocatalytic photooxidation of 2-methoxybenzyl alcohol in water, J. Mol. Catal. A: Chem. 403 (2015) 37–42, https://doi.org/10.1016/j.molcata.2015.03.021.; M.J. Pavan, H. Fridman, G. Segalovich, A.I. Shames, N.G. Lemcoff, T. Mokari, Photoxidation of Benzyl Alcohol with Heterogeneous Photocatalysts in the UV Range: The Complex Interplay with the Autoxidative Reaction, ChemCatChem 10 (2018) 2541–2545, https://doi.org/10.1002/cctc.201800284.; X. Xiao, C. Zheng, M. Lu, L. Zhang, F. Liu, X. Zuo, J. Nan, Deficient Bi24O31Br10as a highly efficient photocatalyst for selective oxidation of benzyl alcohol into benzaldehyde under blue LED irradiation, Appl. Catal. B: Environ. 228 (2018) 142–151, https://doi.org/10.1016/j.apcatb.2018.01.076.; S. Higashimoto, N. Suetsugu, M. Azuma, H. Ohue, Y. Sakata, Efficient and selective oxidation of benzylic alcohol by O2into corresponding aldehydes on a TiO2photocatalyst under visible light irradiation: Effect of phenyl-ring substitution on the photocatalytic activity, J. Catal. 274 (2010) 76–83, https://doi.org/ 10.1016/j.jcat.2010.06.006.; X.F. Zhang, Z. Wang, Y. Zhong, J. Qiu, X. Zhang, Y. Gao, X. Gu, J. Yao, TiO 2 nanorods loaded with Au–Pt alloy nanoparticles for the photocatalytic oxidation of benzyl alcohol, J. Phys. Chem. Solids 126 (2019) 27–32, https://doi.org/10.1016/ j.jpcs.2018.10.026; D.A. Giannakoudakis, M. Florent, R. Wallace, J. Secor, C. Karwacki, T.J. Bandosz, Zinc peroxide nanoparticles: Surface, chemical and optical properties and the effect of thermal treatment on the detoxification of mustard gas, Appl. Catal. B: Environ. 226 (2018) 429–440, https://doi.org/10.1016/j.apcatb.2017.12.068.; A. Khan, M. Goepel, W. Lisowski, D. Łomot, D. Lisovytskiy, M. MazurkiewiczPawlicka, R. Glaser, ¨ J.C. Colmenares, Titania/chitosan-lignin nanocomposite as an efficient photocatalyst for the selective oxidation of benzyl alcohol under UV and visible light, RSC Adv. 11 (2021) 34996–35010, https://doi.org/10.1039/ d1ra06500a.; J.M. Achord, C.L. Hussey, Determination of dissolved oxygen in nonaqueous electrochemical solvents, Anal. Chem. 52 (1980) 601–602, https://doi.org/ 10.1021/ac50053a061.; D.A. Giannakoudakis, V. Nair, A. Khan, E.A. Deliyanni, J.C. Colmenares, K. S. Triantafyllidis, Additive-free photo-assisted selective partial oxidation at ambient conditions of 5-hydroxymethylfurfural by manganese (IV) oxide nanorods, Appl. Catal. B: Environ. 256 (2019), 117803, https://doi.org/10.1016/j. apcatb.2019.117803.; F. Vendruscolo, M.J. Rossi, W. Schmidell, J.L. Ninow, Determination of Oxygen Solubility in Liquid Media, ISRN Chem. Eng. 2012 (2012) 1–5, https://doi.org/ 10.5402/2012/601458.; Q. Li, C. Batchelor-Mcauley, N.S. Lawrence, R.S. Hartshorne, R.G. Compton, Anomalous solubility of oxygen in acetonitrile/water mixture containing tetra-nbutylammonium perchlorate supporting electrolyte; The solubility and diffusion coefficient of oxygen in anhydrous acetonitrile and aqueous mixtures, J. Electroanal. Chem. 688 (2013) 328–335, https://doi.org/10.1016/j. jelechem.2012.07.039.; D.A. Giannakoudakis, M. Seredych, E. Rodríguez-Castellon, ´ T.J. Bandosz, Mesoporous graphitic carbon nitride-based nanospheres as visible-light active chemical warfare agents decontaminant, ChemNanoMat 2 (2016) 268–272, https://doi.org/10.1002/cnma.201600030.; D.A. Giannakoudakis, T.J. Bandosz, Building MOF nanocomposites with oxidized graphitic carbon nitride nanospheres: the effect of framework geometry on the structural heterogeneity, Molecules 24 (2019) 4529, https://doi.org/10.3390/ molecules24244529.; D.A. Giannakoudakis, N.A. Travlou, J. Secor, T.J. Bandosz, Oxidized g-C 3 N 4 Nanospheres as Catalytically Photoactive Linkers in MOF/g-C 3 N 4 Composite of Hierarchical Pore Structure, Small 13 (2017), 1601758, https://doi.org/10.1002/ smll.201601758.; D.A. Giannakoudakis, T.J. Bandosz, Defectous UiO-66 MOF Nanocomposites as Reactive Media of Superior Protection against Toxic Vapors, ACS Appl. Mater. Interfaces 12 (2020) 14678–14689, https://doi.org/10.1021/acsami.9b17314; D.A. Giannakoudakis, J.A. Arcibar-Orozco, T.J. Bandosz, Key role of terminal hydroxyl groups and visible light in the reactive adsorption/catalytic conversion of mustard gas surrogate on zinc (hydr)oxides, Appl. Catal. B: Environ. 174 (2015) 96–104, https://doi.org/10.1016/j.apcatb.2015.02.028.; https://doi.org/10.1016/j.apcatb.2022.121939; https://hdl.handle.net/20.500.12494/52377; Dimitrios A. Giannakoudakis, Abdul Qayyum, Mariusz Barczak, Ramón Fernando Colmenares-Quintero, Piotr Borowski, Konstantinos Triantafyllidis, Juan Carlos Colmenares, Mechanistic and kinetic studies of benzyl alcohol photocatalytic oxidation by nanostructured titanium (hydro)oxides: Do we know the entire story?, Applied Catalysis B: Environmental, Volume 320, 2023, 121939, ISSN 0926-3373, https://doi.org/10.1016/j.apcatb.2022.121939. (https://www.sciencedirect.com/science/article/pii/S0926337322008803) Abstract: Selective upgrade of lignocellulosic biomass-derived aromatic compounds by photocatalytic oxidation is assumed as a prosperous, environmentally friendly, and cost-effective process. We present for the first time the application of various advantageous titanium oxide nano-photocatalysts for the additives-free selective partial oxidation of benzyl alcohol to benzaldehyde at ambient conditions. The two best-performing materials were found titanate nanotubes and nanocores of anatase surrounded by amorphous titanium hydroxide phase. The results obtained by scavenger tests on top of the DFT calculations led us to conclude that various reactions and active species are responsible by a complex way for materials’ photoreactivity. Depending on nanocatalysts’ physicochemical features as well as the light irradiation (ultraviolet vs. royal-blue), different mechanisms/oxidation-pathways are photo-catalyzed. Finally, we show that utilizing organic compounds like benzoquinone as scavenger hides risks due to the interactions with the targeted to be converted organic that results in elevated photolytic decomposition even under royal-blue light. Keywords: Biomass valorization; Photocatalysis; Benzyl alcohol oxidation; Benzaldehyde; TiO2 nanomaterials; Titanate nanotubes; DIMITRIOS A GIANNAKOUDAKIS, ABDUL QAYUUM, MARIUSZ BARCZAK, RAMON FERNANDO COLMENARES QUINTERO, PIOTR BOROWSKI, KONSTANTINOS TRIANTAFYLLIDIS, JUAN CARLOS COLMENARES QUINTERO, "Mechanistic and kinetic studies of benzyl alcohol photocatalytic oxidation by nanostructured titanium (hydro)oxides: do we know the entire story?" . En: Países Bajos Applied Catalysis B: Environmental ISSN: 0926-3373 ed: Elsevier Science Bv v.320 fasc.N/A p.1 - 54 ,2022, DOI:10.1016/j.apcatb.2022.121939
-
7Dissertation/ Thesis
المؤلفون: Lizarazo Aparicio, María Cristina
المساهمون: Gutiérrez Álvarez, Luis Felipe, Grupo de Investigación en Biomoléculas Alimentarias
مصطلحات موضوعية: 660 - Ingeniería química::664 - Tecnología de alimentos, Tecnología de alimentos, Vegetable oils, Aceites vegetales, Oleogeles, Sacha inchi, Aceites estructurados, Torta de prensa de aceite, Estabilidad oxidativa, Valorización de biomasa, Oleogels, Structured oils, Oil press-cake, Oxidative stability, Biomass valorization
وصف الملف: xi, 83 páginas; application/pdf
Relation: Abdollahi, M., Goli, S. A. H., & Soltanizadeh, N. (2020). Physicochemical Properties of Foam-Templated Oleogel Based on Gelatin and Xanthan Gum. European Journal of Lipid Science and Technology, 122(2), 1–9. https://doi.org/10.1002/ejlt.201900196; Abdolmaleki, K., Alizadeh, L., Nayebzadeh, K., Hosseini, S. M., & Shahin, R. (2019). Oleogel production based on binary and ternary mixtures of sodium caseinate, xanthan gum, and guar gum: Optimization of hydrocolloids concentration and drying method. Journal of Texture Studies, 51(2), 290–299. https://doi.org/10.1111/jtxs.12469; Ahmadzadeh, S., Chen, W., & Rizvi, S. S. H. (2022). Oleogelation using modified milk protein concentrate produced by supercritical fluid extrusion. Lwt, 160(August 2021), 113114. https://doi.org/10.1016/j.lwt.2022.113114; Alizadeh, L., Abdolmaleki, K., Nayebzadeh, K., & Hosseini, S. M. (2020). Oleogel Fabrication Based on Sodium Caseinate, Hydroxypropyl Methylcellulose, and Beeswax: Effect of Concentration, Oleogelation Method, and Their Optimization. JAOCS, Journal of the American Oil Chemists’ Society, 97(5), 485–496. https://doi.org/10.1002/aocs.12341; Alvarez-Ramirez, J., Vernon-Carter, E. J., Carrera-Tarela, Y., Garcia, A., & Roldan-Cruz, C. (2020). Effects of candelilla wax/canola oil oleogel on the rheology, texture, thermal properties and in vitro starch digestibility of wheat sponge cake bread. Lwt, 130, 109701. https://doi.org/10.1016/j.lwt.2020.109701; Alvarez, M. D., Cofrades, S., Espert, M., Salvador, A., & Sanz, T. (2021). Thermorheological characterization of healthier reduced-fat cocoa butter formulated by substitution with a hydroxypropyl methylcellulose (Hpmc)-based oleogel. Foods, 10(4). https://doi.org/10.3390/foods10040793; Anal, A. K., Shrestha, S., & Sadiq, M. B. (2019). Biopolymeric-based emulsions and their effects during processing, digestibility and bioaccessibility of bioactive compounds in food systems. Food Hydrocolloids, 87(August 2018), 691–702. https://doi.org/10.1016/j.foodhyd.2018.09.008; AOCS. (2020). Official Methods and Recommended Practices of the AOCS (7th ed.): Champaign IL, USA: AOCS Press.; Astrup, A., Magkos, F., Bier, D. M., Brenna, J. T., de Oliveira Otto, M. C., Hill, J. O., King, J. C., Mente, A., Ordovas, J. M., Volek, J. S., Yusuf, S., & Krauss, R. M. (2020). Saturated Fats and Health: A Reassessment and Proposal for Food-Based Recommendations: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 76(7), 844–857. https://doi.org/10.1016/j.jacc.2020.05.077; Baris Ozel and Mecit Halil Oztop. (2023). Rheology of food bigel system. In Advances in Food Rheology and Its Applications. LTD. https://doi.org/10.1016/b978-0-12-823983-4.00022-4; Barroso, N. G., Santos, M. A. S., Okuro, P. K., & Cunha, R. L. (2022). Composition and process approaches that underpin the mechanical properties of oleogels. JAOCS, Journal of the American Oil Chemists’ Society, 99(11), 971–984. https://doi.org/10.1002/aocs.12635; Bascuas, S., Espert, M., Llorca, E., Quiles, A., Salvador, A., & Hernando, I. (2021). Structural and sensory studies on chocolate spreads with hydrocolloid-based oleogels as a fat alternative. Lwt, 135(September 2020), 110228. https://doi.org/10.1016/j.lwt.2020.110228; Bascuas, S., Hernando, I., Moraga, G., & Quiles, A. (2019). Structure and stability of edible oleogels prepared with different unsaturated oils and hydrocolloids. International Journal of Food Science and Technology, 55(4), 1458–1467. https://doi.org/10.1111/ijfs.14469; Bascuas, S., Morell, P., Hernando, I., & Quiles, A. (2021). Recent trends in oil structuring using hydrocolloids. Food Hydrocolloids, 118(January), 106612. https://doi.org/10.1016/j.foodhyd.2021.106612; Bascuas, S., Salvador, A., Hernando, I., & Quiles, A. (2020). Designing Hydrocolloid-Based Oleogels With High Physical, Chemical, and Structural Stability. Frontiers in Sustainable Food Systems, 4(July), 1–8. https://doi.org/10.3389/fsufs.2020.00111; Bascuas Véntola, M. S. (2021). Estructuración de aceites mediante el uso de hidrocoloides para sustituir grasas plásticas en los alimentos.; Bot, A., Den Adel, R., & Roijers, E. C. (2008). Fibrils of γ-oryzanol + β-sitosterol in edible oil organogels. JAOCS, Journal of the American Oil Chemists’ Society, 85(12), 1127–1134. https://doi.org/10.1007/s11746-008-1298-7; Bueno-Borges, L. B., Sartim, M. A., Gil, C. C., Sampaio, S. V., Rodrigues, P. H. V., & Regitano-d’Arce, M. A. B. (2018). Sacha inchi seeds from sub-tropical cultivation: effects of roasting on antinutrients, antioxidant capacity and oxidative stability. Journal of Food Science and Technology, 55(10), 4159–4166. https://doi.org/10.1007/s13197-018-3345-1; Blake, A. I., & Marangoni, A. G. (2015). The Use of Cooling Rate to Engineer the Microstructure and Oil Binding Capacity of Wax Crystal Networks. Food Biophysics, 10(4), 456-465.; Chen, B., McClements, D. J., & Decker, E. A. (2013). Design of foods with bioactive lipids for improved health. Annual Review of Food Science and Technology, 4(1), 35–56. https://doi.org/10.1146/annurev-food-032112-135808; Chen, C. H., & Terentjev, E. M. (2009). Aging and metastability of monoglycerides in hydrophobic solutions. Langmuir, 25(12), 6717–6724. https://doi.org/10.1021/la9002065; Chen, K., & Zhang, H. (2020). Fabrication of Oleogels via a Facile Method by Oil Absorption in the Aerogel Templates of Protein-Polysaccharide Conjugates. ACS Applied Materials and Interfaces, 12(6), 7795–7804. https://doi.org/10.1021/acsami.9b21435; Chirinos, R., Aquino, M., Pedreschi, R., & Campos, D. (2016). Optimized Methodology for Alkaline and Enzyme-Assisted Extraction of Protein from Sacha Inchi (Plukenetia volubilis) Kernel Cake. Journal of Food Process Engineering, 40(2). https://doi.org/10.1111/jfpe.12412; Chirinos, R., Pedreschi, R., Domínguez, G., & Campos, D. (2015). Comparison of the physico-chemical and phytochemical characteristics of the oil of two Plukenetia species. Food Chemistry, 173, 1203–1206. https://doi.org/10.1016/j.foodchem.2014.10.120; Chirinos, R., Zuloeta, G., Pedreschi, R., Mignolet, E., Larondelle, Y., & Campos, D. (2013). Sacha inchi (Plukenetia volubilis): A seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity. Food Chemistry, 141(3), 1732–1739. https://doi.org/10.1016/j.foodchem.2013.04.078; Cisneros, F. H., Paredes, D., Arana, A., & Cisneros-Zevallos, L. (2014). Chemical composition, oxidative stability and antioxidant capacity of oil extracted from roasted seeds of Sacha-inchi (Plukenetia volubilis L.). Journal of Agricultural and Food Chemistry, 62(22), 5191–5197. https://doi.org/10.1021/jf500936j; Co, E. D., & Marangoni, A. G. (2012). Organogels: An alternative edible oil-structuring method. JAOCS, Journal of the American Oil Chemists’ Society, 89(5), 749–780. https://doi.org/10.1007/s11746-012-2049-3; Co, E. D., & Marangoni, A. G. (2018). Oleogels: An Introduction. In Edible Oleogels. AOCS Press. https://doi.org/10.1016/b978-0-12-814270-7.00001-0; da Pieve, S., Calligaris, S., Co, E., Nicoli, M. C., & Marangoni, A. G. (2010). Shear Nanostructuring of monoglyceride organogels. Food Biophysics, 5(3), 211–217. https://doi.org/10.1007/s11483-010-9162-3; da Silva, S. L., Amaral, J. T., Ribeiro, M., Sebastião, E. E., Vargas, C., de Lima Franzen, F., Schneider, G., Lorenzo, J. M., Fries, L. L. M., Cichoski, A. J., & Campagnol, P. C. B. (2019). Fat replacement by oleogel rich in oleic acid and its impact on the technological, nutritional, oxidative, and sensory properties of Bologna-type sausages. Meat Science, 149(November 2018), 141–148. https://doi.org/10.1016/j.meatsci.2018.11.020; Davidovich-Pinhas, M., Barbut, S., & Marangoni, A. G. (2016). Development, Characterization, and Utilization of Food-Grade Polymer Oleogels. Annual Review of Food Science and Technology, 7(December 2015), 65–91. https://doi.org/10.1146/annurev-food-041715-033225; De Boer, A. A., Ismail, A., Marshall, K., Bannenberg, G., Yan, K. L., & Rowe, W. J. (2018). Examination of marine and vegetable oil oxidation data from a multi-year, third-party database. Food Chemistry, 254(February), 249–255. https://doi.org/10.1016/j.foodchem.2018.01.180; de Vries, A. (2017). Structuring oil by protein building blocks. In Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Science.; de Vries, A., Hendriks, J., Van Der Linden, E., & Scholten, E. (2015). Protein Oleogels from Protein Hydrogels via a Stepwise Solvent Exchange Route. Langmuir, 31(51), 13850–13859. https://doi.org/10.1021/acs.langmuir.5b03993; de Vries, A., Wesseling, A., van der Linden, E., & Scholten, E. (2017). Protein oleogels from heat-set whey protein aggregates. Journal of Colloid and Interface Science, 486, 75–83. https://doi.org/10.1016/j.jcis.2016.09.043; del-Castillo, Á. M. R., Gonzalez-Aspajo, G., de Fátima Sánchez-Márquez, M., & Kodahl, N. (2019). Ethnobotanical Knowledge in the Peruvian Amazon of the Neglected and Underutilized Crop Sacha Inchi (Plukenetia volubilis L.). Economic Botany, 73(2), 281–287. https://doi.org/10.1007/s12231-019-09459-y; Dickinson, E. (2008). Interfacial structure and stability of food emulsions as affected by protein–polysaccharide interactions. Soft Matter, 4, 932–942. https://doi.org/10.1039/b800106e; dos Santos Carvalho, J. D., Rabelo, R. S., & Hubinger, M. D. (2022). Thermo-rheological properties of chitosan hydrogels with hydroxypropyl methylcellulose and methylcellulose. International Journal of Biological Macromolecules, 209(PA), 367–375. https://doi.org/10.1016/j.ijbiomac.2022.04.035; Espert, M., Hern, M. J., Sanz, T., & Salvador, A. (2021). Food Hydrocolloids Reduction of saturated fat in chocolate by using sunflower oil-hydroxypropyl methylcellulose based oleogels. 120(April 2021), 0–5. https://doi.org/10.1016/j.foodhyd.2021.106917; Espert, M., Hernández, M. J., Sanz, T., & Salvador, A. (2022). Rheological properties of emulsion templated oleogels based on xanthan gum and different structuring agents. Current Research in Food Science, 5(March), 564–570. https://doi.org/10.1016/j.crfs.2022.03.001; Espert, M., Salvador, A., & Sanz, T. (2020). Cellulose ether oleogels obtained by emulsion-templated approach without additional thickeners. Food Hydrocolloids, 109(March), 106085. https://doi.org/10.1016/j.foodhyd.2020.106085; Fanali, C., Dugo, L., Cacciola, F., Beccaria, M., Grasso, S., Dachà, M., Dugo, P., & Mondello, L. (2011). Chemical characterization of Sacha inchi (Plukenetia volubilis L.) oil. Journal of Agricultural and Food Chemistry, 59(24), 13043–13049. https://doi.org/10.1021/jf203184y; Farooq, S., Ahmad, M. I., Zhang, Y., Chen, M., & Zhang, H. (2023). Preparation, characterization and digestive mechanism of plant-derived oil bodies-based oleogels structured by chitosan and vanillin. Food Hydrocolloids, 136(PA), 108247. https://doi.org/10.1016/j.foodhyd.2022.108247; Feichtinger, A., Nibbelink, D. G., Poppe, S., Bozzo, L., Landman, J., & Scholten, E. (2022). Protein oleogels prepared by solvent transfer method with varying protein sources. Food Hydrocolloids, 132(May), 107821. https://doi.org/10.1016/j.foodhyd.2022.107821; Mohanan, A., Tang, Y. R., Nickerson, M. T., & Ghosh, S. (2020b). Oleogelation using pulse protein-stabilized foams and their potential as a baking ingredient. RSC Advances, 10(25), 14892–14905. https://doi.org/10.1039/c9ra07614j; Morenga, L. Te, & Montez, J. M. (2017). Health effects of saturated and trans-fatty acid intake in children and adolescents: Systematic review and meta-analysis. PLoS ONE, 12(11). https://doi.org/10.1371/journal.pone.0186672; Mozaffarian, D., & Clarke, R. (2009). Quantitative effects on cardiovascular risk factors and coronary heart disease risk of replacing partially hydrogenated vegetable oils with other fats and oils. European Journal of Clinical Nutrition, 63(S2), S22–S33. https://doi.org/10.1038/sj.ejcn.1602976; Muangrat, R., Veeraphong, P., & Chantee, N. (2018). Screw press extraction of Sacha inchi seeds: Oil yield and its chemical composition and antioxidant properties. Journal of Food Processing and Preservation, 42(6), 1–10. https://doi.org/10.1111/jfpp.13635; Nettleton, J. A., Brouwer, I. A., Geleijnse, J. M., & Hornstra, G. (2017). Saturated Fat Consumption and Risk of Coronary Heart Disease and Ischemic Stroke: A Science Update. Annals of Nutrition and Metabolism, 70(1), 26–33. https://doi.org/10.1159/000455681; Niu, Y. X., Li, W., Zhu, J., Huang, Q., Jiang, M., & Huang, F. (2012). Aqueous enzymatic extraction of rapeseed oil and protein from dehulled cold-pressed double-low rapeseed cake. International Journal of Food Engineering, 8(3). https://doi.org/10.1515/1556-3758.2530; Oh, I., Lee, J. H., Lee, H. G., & Lee, S. (2019). Feasibility of hydroxypropyl methylcellulose oleogel as an animal fat replacer for meat patties. Food Research International, 122(August 2018), 566–572. https://doi.org/10.1016/j.foodres.2019.01.012; Okuro, P. K., Martins, A. J., Vicente, A. A., & Cunha, R. L. (2020). Perspective on oleogelator mixtures, structure design and behaviour towards digestibility of oleogels. Current Opinion in Food Science, 35, 27–35. https://doi.org/10.1016/j.cofs.2020.01.001; Ozel, B., & Oztop, M. H. (2023). Chapter 22 - Rheology of food hydrogels, and organogels. In J. Ahmed & S. Basu (Eds.), Advances in Food Rheology and Its Applications (Second Edition) (pp. 661-688): Woodhead Publishing.; Pan, J., Tang, L., Dong, Q., Li, Y., & Zhang, H. (2021). Effect of oleogelation on physical properties and oxidative stability of camellia oil-based oleogels and oleogel emulsions. Food Research International, 140(July 2020), 110057. https://doi.org/10.1016/j.foodres.2020.110057; Paper, F. A. O. F. (2010). Fats and fatty acids in human nutrition. Report of an expert consultation. In FAO food and nutrition paper (Vol. 91).; Park, C., Jimenez-Flores, R., & Maleky, F. (2020). Quantifications of oleocolloid matrices made of whey protein and oleogels. Foods, 9(11). https://doi.org/10.3390/FOODS9111697; Patel, A., Desai, S. S., Mane, V. K., Enman, J., Rova, U., Christakopoulos, P., & Matsakas, L. (2022). Futuristic food fortification with a balanced ratio of dietary ω-3/ω-6 omega fatty acids for the prevention of lifestyle diseases. Trends in Food Science and Technology, 120(January), 140–153. https://doi.org/10.1016/j.tifs.2022.01.006; Patel, A. R. (2015). Potential Food Applications of Oleogels. https://doi.org/10.1007/978-3-319-19138-6_5; Patel, A. R. (2018). Formation and Properties of Biopolymer ‐ Based Oleogels Formation of Polymer ‐ Based Oleogels.; Patel and Koen Dewettinck. (2015). Comparative evaluation of structured oil systems: shellac oleogel, HPMC oleogel and HIPE gel. European Journal of Lipid Science and Technology, 117, Issue, 1772–1781.; Patel, A. R., Cludts, N., Sintang, M. D. Bin, Lesaffer, A., & Dewettinck, K. (2014). Edible oleogels based on water soluble food polymers: Preparation, characterization and potential application. Food and Function, 5(11), 2833–2841. https://doi.org/10.1039/c4fo00624k; Patel, Cludts, N., Bin Sintang, M. D., Lewille, B., Lesaffer, A., & Dewettinck, K. (2014). Polysaccharide-based oleogels prepared with an emulsion-templated approach. ChemPhysChem, 15(16), 3435–3439. https://doi.org/10.1002/cphc.201402473; Patel, A. R., Schatteman, D., De Vos, W. H., Lesaffer, A., & Dewettinck, K. (2013). Preparation and rheological characterization of shellac oleogels and oleogel-based emulsions. Journal of Colloid and Interface Science, 411(2013), 114–121. https://doi.org/10.1016/j.jcis.2013.08.039; Patel, A. R., Schatteman, D., Lesaffer, A., & Dewettinck, K. (2013). A foam-templated approach for fabricating organogels using a water-soluble polymer. RSC Advances, 3(45), 22900–22903. https://doi.org/10.1039/c3ra44763d; Pernetti, M., van Malssen, K. F., Flöter, E., & Bot, A. (2007). Structuring of edible oils by alternatives to crystalline fat. Current Opinion in Colloid and Interface Science, 12(4–5), 221–231. https://doi.org/10.1016/j.cocis.2007.07.002; Pinho, E., Machado, S., & Soares, G. (2019). Smart Hydrogel for the pH-Selective Drug Delivery of Antimicrobial Compounds. Macromolecular Symposia, 385(1), 1–7. https://doi.org/10.1002/masy.201800182; Plazzotta, S., Calligaris, S., & Manzocco, L. (2020). Structural characterization of oleogels from whey protein aerogel particles. Food Research International, 132(December 2019), 109099. https://doi.org/10.1016/j.foodres.2020.109099; Plazzotta, S., Jung, I., Schroeter, B., Subrahmanyam, R. P., Smirnova, I., Calligaris, S., Gurikov, P., & Manzocco, L. (2021). Conversion of whey protein aerogel particles into oleogels: Effect of oil type on structural features. Polymers, 13(23). https://doi.org/10.3390/polym13234063; Pușcaș, A., Mureșan, V., & Muste, S. (2021). Application of analytical methods for the comprehensive analysis of oleogels—A review. Polymers, 13(12). https://doi.org/10.3390/polym13121934; Puscas, A., Muresan, V., Socaciu, C., & Muste, S. (2020). Oleogels in food: A review of current and potential applications. Foods, 9(1), 1–28. https://doi.org/10.3390/foods9010070; Rawdkuen, S., D’Amico, S., & Schoenlechner, R. (2022). Physicochemical, Functional, and In Vitro Digestibility of Protein Isolates from Thai and Peru Sacha Inchi (Plukenetia volubilis L.) Oil Press-Cakes. In Foods (Vol. 11, Issue 13, p. 1869). https://doi.org/10.3390/foods11131869; Rodrigo Valenzuela, B., Gladys Tapia, O., Marcela González, E., & Alfonso Valenzuela, B. (2011). Omega-3 fatty acids (EPA and DHA) and its application in diverse clinical situations. Revista Chilena de Nutricion, 38(3), 356–367. https://doi.org/10.4067/s0717-75182011000300011; Rogers, M. A., Wright, A. J., & Marangoni, A. G. (2008). Crystalline stability of self-assembled fibrillar networks of 12-hydroxystearic acid in edible oils. Food Research International, 41(10), 1026–1034. https://doi.org/10.1016/j.foodres.2008.07.012; Rogers, M. A., Wright, A. J., & Marangoni, A. G. (2009). Nanostructuring fiber morphology and solvent inclusions in 12-hydroxystearic acid / canola oil organogels. Current Opinion in Colloid and Interface Science, 14(1), 33–42. https://doi.org/10.1016/j.cocis.2008.02.004; Rohman, A., & Che Man, Y. B. (2012). Quantification and classification of corn and sunflower oils as adulterants in olive oil using chemometrics and FTIR spectra. The Scientific World Journal, 2012. https://doi.org/10.1100/2012/250795; Romoscanu, A. I., & Mezzenga, R. (2006). Emulsion-templated fully reversible protein-in-oil gels. Langmuir, 22(18), 7812–7818. https://doi.org/10.1021/la060878p; Rouilly, A., Orliac, O., Silvestre, F., & Rigal, L. (2003). Thermal denaturation of sunflower globulins in low moisture conditions. Thermochimica Acta, 398(1–2), 195–201. https://doi.org/10.1016/S0040-6031(02)00365-9; Ruiz, C., Díaz, C., Anaya, J., & Rojas, R. (2013). Aproximate analysis, antinutrients, fatty acids and amino acids profiles of seeds and cakes from 2 species of sacha inchi: Plukenetia volubilis and Plukenetia huayllabambana. Revista de La Sociedad Química Del Perú, 79(1), 29–36; Saengsorn, K., & Jimtaisong, A. (2017). Determination of hydrophilic–lipophilic balance value and emulsion properties of sacha inchi oil. Asian Pacific Journal of Tropical Biomedicine, 7(12), 1092–1096. https://doi.org/10.1016/j.apjtb.2017.10.011; Saini, R. K., & Keum, Y. S. (2016). Tocopherols and tocotrienols in plants and their products: A review on methods of extraction, chromatographic separation, and detection. Food Research International, 82, 59–70. https://doi.org/10.1016/j.foodres.2016.01.025; Saini, R. K., & Keum, Y. S. (2018). Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance — A review. Life Sciences, 203(January), 255–267. https://doi.org/10.1016/j.lfs.2018.04.049; Sanchez-Reinoso, Z., & Gutiérrez, L. F. (2017). Effects of the Emulsion Composition on the Physical Properties and Oxidative Stability of Sacha Inchi (Plukenetia volubilis L.) Oil Microcapsules Produced by Spray Drying. Food and Bioprocess Technology, 10(7), 1354–1366. https://doi.org/10.1007/s11947-017-1906-3; Schaink, H. M., van Malssen, K. F., Morgado-Alves, S., Kalnin, D., & van der Linden, E. (2007). Crystal network for edible oil organogels: Possibilities and limitations of the fatty acid and fatty alcohol systems. Food Research International, 40(9), 1185–1193. https://doi.org/10.1016/j.foodres.2007.06.013; Scholten, E. (2018a). Protein Oleogels: Network Formation of Proteins in Hydrophobic Conditions. In Edible Oleogels. Elsevier Inc. https://doi.org/10.1016/b978-0-12-814270-7.00012-5; Scholten, E. (2018b). Protein Oleogels. In Edible Oleogels. Elsevier Inc. https://doi.org/10.1016/b978-0-12-814270-7.00012-5; Scholten, E. (2019). Edible oleogels: how suitable are proteins as a structurant? Current Opinion in Food Science, 27, 36–42. https://doi.org/10.1016/j.cofs.2019.05.001; Shantha, N. C., & Decker, E. A. (1994). Rapid, Sensitive, Iron-Based Spectrophotometric Methods for Determination of Peroxide Values of Food Lipids. Journal of AOAC INTERNATIONAL, 77(2), 421-424.; Semenova, M. (2017). Protein–polysaccharide associative interactions in the design of tailor-made colloidal particles. Current Opinion in Colloid and Interface Science, 28, 15–21. https://doi.org/10.1016/j.cocis.2016.12.003; Silva-Avellaneda, E., Bauer-Estrada, K., Prieto-Correa, R. E., & Quintanilla-Carvajal, M. X. (2021). The effect of composition, microfluidization and process parameters on formation of oleogels for ice cream applications. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-86233-y; Sim, S. F., & Ting, W. (2012). An automated approach for analysis of Fourier Transform Infrared (FTIR) spectra of edible oils. Talanta, 88, 537–543. https://doi.org/10.1016/j.talanta.2011.11.030; Sintang, M. D. Bin, Rimauxb, T., Walle, D. Van de, Dewettinckc, K., & Patel, A. R. (2017). Studying the oil structuring properties of monoglycerides and phytosterols mixtures. European Journal of Lipid Science and Technology, 119(3), 1500517.; Sivakanthan, S., Fawzia, S., Madhujith, T., & Karim, A. (2022). Synergistic effects of oleogelators in tailoring the properties of oleogels: A review. Comprehensive Reviews in Food Science and Food Safety. https://doi.org/10.1111/1541-4337.12966; Stone, A. K., & Nickerson, M. T. (2012). Formation and functionality of whey protein isolate-(kappa-, iota-, and lambda-type) carrageenan electrostatic complexes. Food Hydrocolloids, 27(2), 271–277. https://doi.org/10.1016/j.foodhyd.2011.08.006; Stortz, T. A., Zetzl, A. K., Barbut, S., Cattaruzza, A., & Marangoni, A. G. (2012). Edible oleogels in food products to help maximize health benefits and improve nutritional profiles. In Lipid Technology (Vol. 24, Issue 7, pp. 151–154). https://doi.org/10.1002/lite.201200205; Takeyama, E., & Fukushima, M. (2013). Physicochemical properties of plukenetia volubilis L. seeds and oxidative stability of cold-pressed oil (green nut oil). Food Science and Technology Research, 19(5), 875–882. https://doi.org/10.3136/fstr.19.875; Tang, Y. R., & Ghosh, S. (2021). Canola protein thermal denaturation improved emulsion-templated oleogelation and its cake-baking application. RSC Advances, 11(41), 25141–25157. https://doi.org/10.1039/d1ra02250d; Tang, Y. R., Sharma, M., & Ghosh, S. (2022). Pulse and Oilseed Protein-based Oil Structuring for Baking Application. In J. F. Toro-Vazquez (Ed.), Development of Trans-free Lipid Systems and their Use in Food Products (pp. 0): The Royal Society of Chemistry.; Toro-Vazquez, J. F., Mauricio-Pérez, R., González-Chávez, M. M., Sánchez-Becerril, M., Ornelas-Paz, J. de J., & Pérez-Martínez, J. D. (2013). Physical properties of organogels and water in oil emulsions structured by mixtures of candelilla wax and monoglycerides. Food Research International, 54(2), 1360–1368. https://doi.org/10.1016/j.foodres.2013.09.046; Torres Sánchez, E. G., Hernández-Ledesma, B., & Gutiérrez, L.-F. (2023). Sacha Inchi Oil Press-cake: Physicochemical Characteristics, Food-related Applications and Biological Activity. Food Reviews International, 39(1), 148-159.; Vaclavik, V. A., & Christian, E. W. (2014). Essentials of food science. In Choice Reviews Online (Vol. 45, Issue 11). https://doi.org/10.5860/choice.45-6154; Vanegas-Azuero, A. M., & Gutiérrez, L. F. (2018). Physicochemical and sensory properties of yogurts containing sacha inchi (Plukenetia volubilis L.) seeds and β-glucans from Ganoderma lucidum. Journal of Dairy Science, 101(2), 1020–1033. https://doi.org/10.3168/jds.2017-13235; Vélez-Erazo, E. M., Bosqui, K., Rabelo, R. S., & Hubinger, M. D. (2021). Effect of ph and pea protein: Xanthan gum ratio on emulsions with high oil content and high internal phase emulsion formation. In Molecules (Vol. 26, Issue 18). https://doi.org/10.3390/molecules26185646; Vélez-Erazo, E. M., Bosqui, K., Rabelo, R. S., Kurozawa, L. E., & Hubinger, M. D. (2020). High internal phase emulsions (HIPE) using pea protein and different polysaccharides as stabilizers. Food Hydrocolloids, 105(October 2019). https://doi.org/10.1016/j.foodhyd.2020.105775; Vélez-Erazo, E. M., Okuro, P. K., Gallegos-Soto, A., da Cunha, R. L., & Hubinger, M. D. (2022). Protein-based strategies for fat replacement: Approaching different protein colloidal types, structured systems and food applications. Food Research International, 156(April). https://doi.org/10.1016/j.foodres.2022.111346; Wang, Q., Espert, M., Larrea, V., Quiles, A., Salvador, A., & Sanz, T. (2023). Comparison of different indirect approaches to design edible oleogels based on cellulose ethers. Food Hydrocolloids, 134(July 2022), 108007. https://doi.org/10.1016/j.foodhyd.2022.108007; Wang, T., Li, N., Zhang, W., Guo, Y., Yu, D., Cheng, J., & Wang, L. (2023). Construction of hemp seed protein isolate-phosphatidylcholine stablized oleogel-in-water gel system and its effect on structural properties and oxidation stability. Food Chemistry, 404(April 2022). https://doi.org/10.1016/j.foodchem.2022.134520; Wang, T., Wang, N., Dai, Y., Yu, D., & Cheng, J. (2023). Interfacial adsorption properties, rheological properties and oxidation kinetics of oleogel-in-water emulsion stabilized by hemp seed protein. Food Hydrocolloids, 137(December 2022), 108402. https://doi.org/10.1016/j.foodhyd.2022.108402; Wei, F., Miao, J., Tan, H., Feng, R., Zheng, Q., Cao, Y., & Lan, Y. (2021). Oleogel-structured emulsion for enhanced oxidative stability of perilla oil: Influence of crystal morphology and cooling temperature. Lwt, 139(August 2020), 110560. https://doi.org/10.1016/j.lwt.2020.110560; Wu, J., & Muir, A. D. (2008). Comparative structural, emulsifying, and biological properties of 2 major canola proteins, cruciferin and napin. Journal of Food Science, 73(3). https://doi.org/10.1111/j.1750-3841.2008.00675.x; Yılmaz, E., & Öğütcü, M. (2014). Properties and stability of hazelnut oil organogels with beeswax and monoglyceride. JAOCS, Journal of the American Oil Chemists’ Society, 91(6), 1007–1017. https://doi.org/10.1007/s11746-014-2434-1; Zhao, M., Xu, M., Monono, E., Rao, J., & Chen, B. (2020). Unlocking the potential of minimally processed corn germ oil and high oleic soybean oil to prepare oleogels for bakery application. Food and Function, 11(12), 10329–10340. https://doi.org/10.1039/d0fo02451a; Zhao, W., Wei, Z., & Xue, C. (2021). Recent advances on food-grade oleogels: Fabrication, application and research trends. Critical Reviews in Food Science and Nutrition, 0(0), 1–18. https://doi.org/10.1080/10408398.2021.1922354; Zheng, L., Zhong, J., Liu, X., Wang, Q., & Qin, X. (2023). Physicochemical properties and intermolecular interactions of a novel diacylglycerol oil oleogel made with ethyl cellulose as affected by γ-oryzanol. Food Hydrocolloids, 138(October 2022), 108484. https://doi.org/10.1016/j.foodhyd.2023.108484; https://repositorio.unal.edu.co/handle/unal/84435; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
8
المؤلفون: Millet Estruch, Blanca
المصدر: RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instnameمصطلحات موضوعية: 5-bis(hidroximetil)tetrahidrofurano (BHMTHF), Grado en Ingeniería Química-Grau en Enginyeria Química, Heterogeneous catalysis, Metales no nobles, Non-noble metals, Continuous flow reactor, 5-bis-(hidroximetil)furano (BHMF) y 2, Hydrogenation of 5-hydroxymethylfurfural, Reactores de lecho fijo, Biomass valorization, Catálisis heterogénea, 5-bis-(hydroxymethyl)furan (BHMF), QUIMICA ORGANICA, 5-bis(hydroxymethyl)tetrahydrofuran (BHMTHF), Hidrogenación de 5-hidroximethilfurfural, Valorización de biomasa
وصف الملف: application/pdf
-
9
المؤلفون: Rodriguez Gonzalez, Carolina
المساهمون: Guerrero Fajardo, Carlos Alberto, Aprovechamiento Energético de Recursos Naturales
المصدر: Repositorio UN
Universidad Nacional de Colombia
instacron:Universidad Nacional de Colombiaمصطلحات موضوعية: mesoporous silica, sílice mesoporosa, 547 - Química orgánica [540 - Química y ciencias afines], ácido levulínico, levulinic acid, 542 - Técnicas, procedimientos, aparatos, equipos, materiales, 668 - Tecnología de otros productos orgánicos, nanopartículas de oro, Biomass valorization, 546 - Química inorgánica, 661 - Tecnología de químicos industriales, γ-valerolactone, γ-valerolactona, gold nanoparticles, Valorización de biomasa, hydrogenation, hidrogenación
وصف الملف: xix, 109 páginas; application/pdf
-
10Dissertation/ Thesis
المؤلفون: Rodriguez Gonzalez, Carolina
المساهمون: Guerrero Fajardo, Carlos Alberto, Aprovechamiento Energético de Recursos Naturales
مصطلحات موضوعية: 546 - Química inorgánica, 540 - Química y ciencias afines::547 - Química orgánica, 542 - Técnicas, procedimientos, aparatos, equipos, materiales, 661 - Tecnología de químicos industriales, 668 - Tecnología de otros productos orgánicos, Valorización de biomasa, ácido levulínico, hidrogenación, γ-valerolactona, nanopartículas de oro, sílice mesoporosa, Biomass valorization, levulinic acid, hydrogenation, γ-valerolactone, gold nanoparticles, mesoporous silica
وصف الملف: xix, 109 páginas; application/pdf
Relation: S. K. Maity, “Opportunities, recent trends and challenges of integrated biorefinery: Part i,” Renewable and Sustainable Energy Reviews, vol. 43. Elsevier Ltd, pp. 1427–1445, 01-Mar-2015.; S. Kang, J. Fu, and G. Zhang, “From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis,” Renewable and Sustainable Energy Reviews, vol. 94. Elsevier Ltd, pp. 340–362, 01-Oct-2018.; I. T. Horváth, H. Mehdi, V. Fábos, L. Boda, and L. T. Mika, “γ-Valerolactone-a sustainable liquid for energy and carbon-based chemicals,” Green Chem., vol. 10, no. 2, pp. 238–242, Feb. 2008.; N. Savage, “Fuel options: The ideal biofuel,” Nature, vol. 474, no. 7352 SUPPL., pp. S9–S11, Jun. 2011.; J. Zhang, S. Wu, B. Li, and H. Zhang, “Advances in the Catalytic Production of Valuable Levulinic Acid Derivatives,” ChemCatChem, vol. 4, no. 9, pp. 1230–1237, Sep. 2012.; P. A. Son, S. Nishimura, and K. Ebitani, “Production of γ-valerolactone from biomass-derived compounds using formic acid as a hydrogen source over supported metal catalysts in water solvent,” RSC Adv., vol. 4, no. 21, pp. 10525–10530, Feb. 2014.; Z. Zhang, “Synthesis of γ-Valerolactone from Carbohydrates and its Applications,” ChemSusChem, vol. 9, no. 2. Wiley-VCH Verlag, pp. 156–171, 21-Jan-2016.; G. C. Bond, “Gold: A relatively new catalyst,” in Catalysis Today, 2002, vol. 72, no. 1–2, pp. 5–9.; A. S. K. Hashmi, “Homogeneous catalysis by gold,” Gold Bull., vol. 37, no. 1–2, pp. 51–65, 2004.; A. Z. Moshfegh, “Nanoparticle catalysts,” J. Phys. D. Appl. Phys., vol. 42, no. 23, 2009.; P. W. N. M. van Leeuwen, Homogeneous Catalysis. Springer Netherlands, 2004.; B. Hvolbæk, T. V. W. Janssens, B. S. Clausen, H. Falsig, C. H. Christensen, and J. K. Nørskov, “Catalytic activity of Au nanoparticles,” Nano Today, vol. 2, no. 4. Elsevier, pp. 14–18, 01-Aug-2007.; C. Sievers, S. L. Scott, Y. Noda, L. Qi, E. M. Albuquerque, and R. M. Rioux, “Phenomena affecting catalytic reactions at solid−Liquid interfaces,” ACS Catal., vol. 6, no. 12, 2016.; X. Li, L. Zhang, S. Wang, and Y. Wu, “Recent Advances in Aqueous-Phase Catalytic Conversions of Biomass Platform Chemicals Over Heterogeneous Catalysts,” Frontiers in Chemistry, vol. 7. Frontiers Media S.A., p. 948, 07-Feb-2020.; M. B. Cortie, “The weird world of nanoscale gold,” Gold Bull., vol. 37, no. 1–2, pp. 12–19, 2004.; C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, and P. P. Edwards, “Metal nanoparticles and their assemblies,” Chem. Soc. Rev., vol. 29, no. 1, pp. 27–35, 2000.; R. Meyer, C. Lemire, S. K. Shaikhutdinov, and H. J. Freund, “Surface chemistry of catalysis by gold,” Gold Bull., vol. 37, no. 1–2, pp. 72–124, 2004.; C. Articles and R. Results, “Web of Knowledge [ v . 5 . 5 ] - All Databases Citing Articles Web of Knowledge [ v . 5 . 5 ] - All Databases Citing Articles,” Chem. Rev., vol. 7641, pp. 1–5, 2012.; A. Thirumurugan, S. Ramachandran, and A. Shiamala Gowri, “Combined effect of bacteriocin with gold nanoparticles against food spoiling bacteria - an approach for food packaging material preparation,” Int. Food Res. J., vol. 20, no. 4, pp. 1909–1912, 2013.; M. L. Sánchez-Martínez, M. P. Aguilar-Caballos, and A. Gómez-Hens, “Homogeneous immunoassay for soy protein determination in food samples using gold nanoparticles as labels and light scattering detection,” Anal. Chim. Acta, vol. 636, no. 1, pp. 58–62, Mar. 2009.; M. Falahati et al., “Gold nanomaterials as key suppliers in biological and chemical sensing, catalysis, and medicine,” Biochimica et Biophysica Acta - General Subjects, vol. 1864, no. 1. Elsevier B.V., p. 129435, 01-Jan-2020.; A. S. Emrani, N. M. Danesh, P. Lavaee, M. Ramezani, K. Abnous, and S. M. Taghdisi, “Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles,” Food Chem., vol. 190, pp. 115–121, May 2016.; M. Nilam, A. Hennig, W. M. Nau, and K. I. Assaf, “Gold nanoparticle aggregation enables colorimetric sensing assays for enzymatic decarboxylation,” Anal. Methods, vol. 9, no. 19, pp. 2784–2787, May 2017.; C. Cheng, H. Y. Chen, C. S. Wu, J. S. Meena, T. Simon, and F. H. Ko, “A highly sensitive and selective cyanide detection using a gold nanoparticle-based dual fluorescence-colorimetric sensor with a wide concentration range,” Sensors Actuators, B Chem., vol. 227, pp. 283–290, May 2016.; C. C. Chang, C. P. Chen, C. Y. Chen, and C. W. Lin, “DNA base-stacking assay utilizing catalytic hairpin assembly-induced gold nanoparticle aggregation for colorimetric protein sensing,” Chem. Commun., vol. 52, no. 22, pp. 4167–4170, Mar. 2016.; J. Tashkhourian, M. Afsharinejad, and A. R. Zolghadr, “Colorimetric chiral discrimination and determination of S-citalopram based on induced aggregation of gold nanoparticles,” Sensors Actuators, B Chem., vol. 232, pp. 52–59, Sep. 2016.; A. Safavi, R. Ahmadi, and Z. Mohammadpour, “Colorimetric sensing of silver ion based on anti aggregation of gold nanoparticles,” Sensors Actuators, B Chem., vol. 242, pp. 609–615, Apr. 2017.; J. Yang et al., “Analyte-triggered autocatalytic amplification combined with gold nanoparticle probes for colorimetric detection of heavy-metal ions,” Chem. Commun., vol. 53, no. 54, pp. 7477–7480, Jul. 2017.; D. Zhang et al., “Colorimetric detection of bisphenol A based on unmodified aptamer and cationic polymer aggregated gold nanoparticles,” Anal. Biochem., vol. 499, pp. 51–56, Apr. 2016.; Y. Huo, L. Qi, X. J. Lv, T. Lai, J. Zhang, and Z. Q. Zhang, “A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles,” Biosens. Bioelectron., vol. 78, pp. 315–320, Apr. 2016.; Y. Mao et al., “A simple and sensitive aptasensor for colorimetric detection of adenosine triphosphate based on unmodified gold nanoparticles,” Talanta, vol. 168, pp. 279–285, Jun. 2017.; H. yan Shi et al., “A gold nanoparticle-based colorimetric strategy coupled to duplex-specific nuclease signal amplification for the determination of microRNA,” Microchim. Acta, vol. 184, no. 2, pp. 525–531, Feb. 2017.; S. Thatai, P. Khurana, S. Prasad, S. K. Soni, and D. Kumar, “Trace colorimetric detection of Pb2+ using plasmonic gold nanoparticles and silica-gold nanocomposites,” Microchem. J., vol. 124, pp. 104–110, Jan. 2016.; M. K. Lam et al., “Tuning Toehold Length and Temperature to Achieve Rapid, Colorimetric Detection of DNA from the Disassembly of DNA-Gold Nanoparticle Aggregates,” Langmuir, vol. 32, no. 6, pp. 1585–1590, Feb. 2016.; R. Kumvongpin et al., “High sensitivity, loop-mediated isothermal amplification combined with colorimetric gold-nanoparticle probes for visual detection of high risk human papillomavirus genotypes 16 and 18,” J. Virol. Methods, vol. 234, pp. 90–95, Aug. 2016.; Y. S. Borghei, M. Hosseini, M. Dadmehr, S. Hosseinkhani, M. R. Ganjali, and R. Sheikhnejad, “Visual detection of cancer cells by colorimetric aptasensor based on aggregation of gold nanoparticles induced by DNA hybridization,” Anal. Chim. Acta, vol. 904, pp. 92–97, Jan. 2016.; X. Liu, Z. Wu, Q. Zhang, W. Zhao, C. Zong, and H. Gai, “Single Gold Nanoparticle-Based Colorimetric Detection of Picomolar Mercury Ion with Dark-Field Microscopy,” Anal. Chem., vol. 88, no. 4, pp. 2119–2124, Feb. 2016.; A. I. Dar, S. Walia, and A. Acharya, “Citric acid-coated gold nanoparticles for visual colorimetric recognition of pesticide dimethoate,” J. Nanoparticle Res., vol. 18, no. 8, pp. 1–8, Aug. 2016.; N. Fahimi-Kashani and M. R. Hormozi-Nezhad, “Gold-nanoparticle-based colorimetric sensor array for discrimination of organophosphate pesticides,” Anal. Chem., vol. 88, no. 16, pp. 8099–8106, Aug. 2016.; L. Gong et al., “Colorimetric aggregation assay for arsenic(III) using gold nanoparticles,” Microchim. Acta, vol. 184, no. 4, pp. 1185–1190, Apr. 2017.; H. Du, R. Chen, J. Du, J. Fan, and X. Peng, “Gold nanoparticle-based colorimetric recognition of creatinine with good selectivity and sensitivity,” Ind. Eng. Chem. Res., vol. 55, no. 48, pp. 12334–12340, 2016.; P. Huang, J. Li, X. Liu, and F. Wu, “Colorimetric determination of aluminum(III) based on the aggregation of Schiff base-functionalized gold nanoparticles,” Microchim. Acta, vol. 183, no. 2, pp. 863–869, Feb. 2016.; J. Du, H. Du, X. Li, J. Fan, and X. Peng, “In-situ colorimetric recognition of arylamine based on chemodosimeter-functionalized gold nanoparticle,” Sensors Actuators, B Chem., vol. 248, pp. 318–323, Sep. 2017.; Y. Wu, M. R. K. Ali, K. Chen, N. Fang, and M. A. El-Sayed, “Gold nanoparticles in biological optical imaging,” Nano Today, vol. 24. Elsevier B.V., pp. 120–140, 01-Feb-2019.; M. R. K. Ali, I. M. Ibrahim, H. R. Ali, S. A. Selim, and M. A. El-Sayed, “Treatment of natural mammary gland tumors in canines and felines using gold nanorods-assisted plasmonic photothermal therapy to induce tumor apoptosis,” Int. J. Nanomedicine, vol. 11, pp. 4849–4863, Sep. 2016.; S. Dhar, E. Maheswara Reddy, A. Shiras, V. Pokharkar, and B. L. V. Prasad, “Natural gum reduced/stabilized gold nanoparticles for drug delivery formulations,” Chem. - A Eur. J., vol. 14, no. 33, pp. 10244–10250, Nov. 2008.; K. S. Chen, T. S. Hung, H. M. Wu, J. Y. Wu, M. T. Lin, and C. K. Feng, “Preparation of thermosensitive gold nanoparticles by plasma pretreatment and UV grafted polymerization,” in Thin Solid Films, 2010, vol. 518, no. 24, pp. 7557–7562.; T. S. Rezende, G. R. S. Andrade, L. S. Barreto, N. B. Costa, I. F. Gimenez, and L. E. Almeida, “Facile preparation of catalytically active gold nanoparticles on a thiolated chitosan,” Mater. Lett., vol. 64, no. 7, pp. 882–884, Apr. 2010.; M. Okumura, T. Akita, and M. Haruta, “Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts,” in Catalysis Today, 2002, vol. 74, no. 3–4, pp. 265–269.; A. Hugon, L. Delannoy, and C. Louis, “Supported gold catalysts for selective hydrogenation of 1,3-butadiene in the presence of an excess of alkenes,” Gold Bull., vol. 41, no. 2, pp. 127–138, 2008.; P. A. Son, D. H. Hoang, and K. T. Canh, “The Role of Gold Nanoparticles on Different Supports for the In-Air Conversion of Levulinic Acid into γ-Valerolactone with Formic Acid as an Alternative Hydrogen Source,” Russ. J. Appl. Chem., vol. 92, no. 9, pp. 1316–1323, Sep. 2019.; X. L. Du et al., “Hydrogen-independent reductive transformation of carbohydrate biomass into γ-valerolactone and pyrrolidone derivatives with supported gold catalysts,” Angew. Chemie - Int. Ed., vol. 50, no. 34, pp. 7815–7819, Aug. 2011.; G. Budroni and A. Corma, “Gold and gold-platinum as active and selective catalyst for biomass conversion: Synthesis of γ-butyrolactone and one-pot synthesis of pyrrolidone,” J. Catal., vol. 257, no. 2, pp. 403–408, Jul. 2008.; F. Cárdenas-Lizana, S. Gómez-Quero, and M. A. Keane, “Ultra-selective gas phase catalytic hydrogenation of aromatic nitro compounds over Au/Al2O3,” Catal. Commun., vol. 9, no. 3, pp. 475–481, Mar. 2008.; K. Shanmugaraj, T. M. Bustamante, C. H. Campos, and C. C. Torres, “Liquid phase hydrogenation of pharmaceutical interest nitroarenes over gold-supported alumina nanowires catalysts,” Materials (Basel)., vol. 13, no. 4, p. 925, Feb. 2020.; G. Zhao, H. Hu, M. Deng, M. Ling, and Y. Lu, “Au/Cu-fiber catalyst with enhanced low-temperature activity and heat transfer for the gas-phase oxidation of alcohols,” Green Chem., vol. 13, no. 1, pp. 55–58, Jan. 2011.; L. A. Parreira et al., “Nanocrystalline gold supported on Fe-, Ti- and Ce-modified hexagonal mesoporous silica as a catalyst for the aerobic oxidative esterification of benzyl alcohol,” Appl. Catal. A Gen., vol. 397, no. 1–2, pp. 145–152, Apr. 2011.; D. Han, T. Xu, J. Su, X. Xu, and Y. Ding, “Gas-Phase Selective Oxidation of Benzyl Alcohol to Benzaldehyde with Molecular Oxygen over Unsupported Nanoporous Gold,” ChemCatChem, vol. 2, no. 4, pp. 383–386, Apr. 2010.; M. Kokate, S. Dapurkar, K. Garadkar, and A. Gole, “Magnetite-silica-gold nanocomposite: One-pot single-step synthesis and its application for solvent-free oxidation of benzyl alcohol,” J. Phys. Chem. C, vol. 119, no. 25, pp. 14214–14223, Jun. 2015.; Y. Liu et al., “Mesoporous Co3O4-supported gold nanocatalysts: Highly active for the oxidation of carbon monoxide, benzene, toluene, and o-xylene,” J. Catal., vol. 309, pp. 408–418, Jan. 2014.; Y. Liu, H. Tsunoyama, T. Akita, S. Xie, and T. Tsukuda, “Aerobic oxidation of cyclohexane catalyzed by size-controlled au clusters on hydroxyapatite: Size effect in the sub-2 nm regime,” ACS Catal., vol. 1, no. 1, pp. 2–6, Jan. 2011.; L. Aschwanden, T. Mallat, M. Maciejewski, F. Krumeich, and A. Baiker, “Development of a new generation of gold catalysts for amine oxidation,” ChemCatChem, vol. 2, no. 6, pp. 666–673, Jun. 2010.; M. Comotti, C. Della Pina, R. Matarrese, M. Rossi, and A. Siani, “Oxidation of alcohols and sugars using Au/C catalysts: Part 2. Sugars,” in Applied Catalysis A: General, 2005, vol. 291, no. 1–2, pp. 204–209.; T. Ishida, S. Okamoto, R. Makiyama, and M. Haruta, “Aerobic oxidation of glucose and 1-phenylethanol over gold nanoparticles directly deposited on ion-exchange resins,” Appl. Catal. A Gen., vol. 353, no. 2, pp. 243–248, Feb. 2009.; T. Ishida, K. Kuroda, N. Kinoshita, W. Minagawa, and M. Haruta, “Direct deposition of gold nanoparticles onto polymer beads and glucose oxidation with H2O2,” J. Colloid Interface Sci., vol. 323, no. 1, pp. 105–111, Jul. 2008.; S. Wei, W. W. Wang, X. P. Fu, S. Q. Li, and C. J. Jia, “The effect of reactants adsorption and products desorption for Au/TiO2 in catalyzing CO oxidation,” J. Catal., vol. 376, pp. 134–145, Aug. 2019.; C. N. Jia, Y. Liu, H. Bongard, and F. Schüth, “Very low temperature CO oxidation over colloidally deposited gold nanoparticles on Mg(OH)2 and MgO,” J. Am. Chem. Soc., vol. 132, no. 5, pp. 1520–1522, Feb. 2010.; M. Comotti, W. C. Li, B. Spliethoff, and F. Schüth, “Support effect in high activity gold catalysts for CO oxidation,” J. Am. Chem. Soc., vol. 128, no. 3, pp. 917–924, Jan. 2006.; Y. Guo et al., “Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: Structure-activity relationship,” Nanoscale, vol. 7, no. 11, pp. 4920–4928, Mar. 2015.; S. Wei, X. P. Fu, W. W. Wang, Z. Jin, Q. S. Song, and C. J. Jia, “Au/TiO2 Catalysts for CO Oxidation: Effect of Gold State to Reactivity,” J. Phys. Chem. C, vol. 122, no. 9, pp. 4928–4936, Mar. 2018.; J. Oliver-Meseguer, J. R. Cabrero-Antonino, I. Domínguez, A. Leyva-Pérez, and A. Corma, “Small gold clusters formed in solution give reaction turnover numbers of 107at room temperature,” Science (80-. )., vol. 338, no. 6113, pp. 1452–1455, Dec. 2012.; S. F. R. Taylor, J. Sá, and C. Hardacre, “Friedel-Crafts Alkylation of Aromatics with Benzyl Alcohol over Gold-Modified Silica,” ChemCatChem, vol. 3, no. 1, pp. 119–121, Jan. 2011.; C. H. Tang, L. He, Y. M. Liu, Y. Cao, H. Y. He, and K. N. Fan, “Direct one-pot reductive N-alkylation of nitroarenes by using alcohols with supported gold catalysts,” Chem. - A Eur. J., vol. 17, no. 26, pp. 7172–7177, Jun. 2011.; X. L. Du, Q. Y. Bi, Y. M. Liu, Y. Cao, and K. N. Fan, “Conversion of biomass-derived levulinate and formate esters into γ-valerolactone over supported gold catalysts,” ChemSusChem, vol. 4, no. 12, pp. 1838–1843, Dec. 2011.; “United States Patent - Dittgen et al.,” 2001.; G. C. Bond and P. A. Sermon, “Gold catalysts for olefin hydrogenation - Transmutation of catalytic properties,” Gold Bull., vol. 6, no. 4, pp. 102–105, 1973.; M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide,” J. Catal., vol. 115, no. 2, pp. 301–309, 1989.; G. J. Hutchings, “Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts,” J. Catal., vol. 96, no. 1, pp. 292–295, 1985.; R. Ciriminna, E. Falletta, C. Della Pina, J. H. Teles, and M. Pagliaro, “Industrial Applications of Gold Catalysis,” Angewandte Chemie - International Edition, vol. 55, no. 46. pp. 14210–14217, 07-Nov-2016.; J. H. Teles, S. Brode, and M. Chabanas, “Cationic gold(I) complexes: Highly efficient catalysts for the addition of alcohols to alkynes,” Angew. Chemie - Int. Ed., vol. 37, no. 10, pp. 1415–1418, Jun. 1998.; T. Ishida, M. Nagaoka, T. Akita, and M. Haruta, “Deposition of gold clusters on porous coordination polymers by solid grinding and their catalytic activity in aerobic oxidation of alcohols,” Chem. - A Eur. J., vol. 14, no. 28, pp. 8456–8460, Sep. 2008.; Q. Shi, Z. Qin, H. Xu, and G. Li, “Heterogeneous cross-coupling over gold nanoclusters,” Nanomaterials, vol. 9, no. 6. MDPI AG, p. 838, 01-Jun-2019.; J. H. Kim, J. S. Park, H. W. Chung, B. W. Boote, and T. R. Lee, “Palladium nanoshells coated with self-assembled monolayers and their catalytic properties,” RSC Adv., vol. 2, no. 9, pp. 3968–3977, Apr. 2012.; Y. Hui, S. Zhang, and W. Wang, “Recent Progress in Catalytic Oxidative Transformations of Alcohols by Supported Gold Nanoparticles,” Advanced Synthesis and Catalysis, vol. 361, no. 10. Wiley-VCH Verlag, pp. 2215–2235, 14-May-2019.; IUPAC Compendium of Chemical Terminology. IUPAC, 2009.; O. C. Gobin, “SBA-16 Materials Synthesis, Diffusion and Sorption Properties,” Thesis, no. January, p. 80, 2006.; R. Ryoo, C. H. Ko, M. Kruk, V. Antochshuk, and M. Jaroniec, “Block-copolymer-templated ordered mesoporous silica: Array of uniform mesopores or mesopore-micropore network?,” J. Phys. Chem. B, vol. 104, no. 48, pp. 11465–11471, Dec. 2000.; M. Haruta, “Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications,” Gold Bull., vol. 37, no. 1–2, pp. 27–36, 2004.; B. L. Moroz, P. A. Pyrjaev, V. I. Zaikovskii, and V. I. Bukhtiyarov, “Nanodispersed Au/Al2O3 catalysts for low-temperature CO oxidation: Results of research activity at the Boreskov Institute of Catalysis,” Catal. Today, vol. 144, no. 3–4, pp. 292–305, Jun. 2009.; T. Takei, I. Okuda, K. K. Bando, T. Akita, and M. Haruta, “Gold clusters supported on La(OH)3 for CO oxidation at 193 K,” Chem. Phys. Lett., vol. 493, no. 4–6, pp. 207–211, Jun. 2010.; T. Ishida, H. Watanabe, T. Bebeko, T. Akita, and M. Haruta, “Aerobic oxidation of glucose over gold nanoparticles deposited on cellulose,” Appl. Catal. A Gen., vol. 377, no. 1–2, pp. 42–46, Apr. 2010.; K. Miyazaki et al., “Influence of supporting materials on catalytic activities of gold nanoparticles as CO-tolerant catalysts in DMFC,” Electrochemistry, vol. 75, no. 2, pp. 217–220, Feb. 2007.; X. D. Luong et al., “Facile Synthesis of MnO2@SiO2/Carbon Nanocomposite-based Gold Catalysts from Rice Husk for Low-Temperature CO Oxidation,” Catal. Letters, vol. 150, no. 9, pp. 2726–2733, Sep. 2020.; L. X. Dien et al., “Supported gold cluster catalysts prepared by solid grinding using a non-volatile organogold complex for low-temperature CO oxidation and the effect of potassium on gold particle size,” Appl. Catal. B Environ., vol. 241, pp. 539–547, 2019.; S. Hermes et al., “Metal@MOF: Loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition,” Angew. Chemie - Int. Ed., vol. 44, no. 38, pp. 6237–6241, Sep. 2005.; T. Fujitani and I. Nakamura, “Mechanism and Active Sites of the Oxidation of CO over Au/TiO2,” Angew. Chemie, vol. 123, no. 43, pp. 10326–10329, Oct. 2011.; B. Cojocaru, Ş. Neaţu, E. Sacaliuc-Pârvulescu, F. Lévy, V. I. Pârvulescu, and H. Garcia, “Influence of gold particle size on the photocatalytic activity for acetone oxidation of Au/TiO2 catalysts prepared by dc-magnetron sputtering,” Appl. Catal. B Environ., vol. 107, no. 1–2, pp. 140–149, Aug. 2011.; Z. Ma, S. Brown, J. Y. Howe, S. H. Overbury, and S. Dai, “Surface modification of Au/TiO2 catalysts by SiO2 via atomic layer deposition,” J. Phys. Chem. C, vol. 112, no. 25, pp. 9448–9457, Jun. 2008.; W. Luo, W. Cao, P. C. A. Bruijnincx, L. Lin, A. Wang, and T. Zhang, “Zeolite-supported metal catalysts for selective hydrodeoxygenation of biomass-derived platform molecules,” Green Chem., vol. 21, no. 14, pp. 3744–3768, 2019.; T. Takei et al., “Heterogeneous Catalysis by Gold,” in Advances in Catalysis, vol. 55, Academic Press Inc., 2012, pp. 1–126.; Y. Sunagawa, K. Yamamoto, H. Takahashi, and A. Muramatsu, “Liquid-phase reductive deposition as a novel nanoparticle synthesis method and its application to supported noble metal catalyst preparation,” Catal. Today, vol. 132, no. 1–4, pp. 81–87, Mar. 2008.; M. B. E. Griffiths, P. J. Pallister, D. J. Mandia, and S. T. Barry, “Atomic Layer Deposition of Gold Metal,” Chem. Mater., vol. 28, no. 1, pp. 44–46, 2016.; A. Villa et al., “Characterisation of gold catalysts,” Chemical Society Reviews, vol. 45, no. 18. Royal Society of Chemistry, pp. 4953–4994, 21-Sep-2016.; S. K. Kulkarni, Nanotechnology: Principles and Practices. Springer, 2014.; I. E. Wachs and C. A. Roberts, “Monitoring surface metal oxide catalytic active sites with Raman spectroscopy,” Chem. Soc. Rev., vol. 39, no. 12, pp. 5002–5017, Nov. 2010.; C. E. Wyman, B. E. Dale, R. T. Elander, M. Holtzapple, M. R. Ladisch, and Y. Y. Lee, “Coordinated development of leading biomass pretreatment technologies,” Bioresour. Technol., vol. 96, no. 18 SPEC. ISS., pp. 1959–1966, Dec. 2005.; D. M. Alonso, S. G. Wettstein, and J. A. Dumesic, “Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass,” Green Chemistry, vol. 15, no. 3. Royal Society of Chemistry, pp. 584–595, 25-Feb-2013.; J. C. Serrano-Ruiz, R. Luque, and A. Sepúlveda-Escribano, “Transformations of biomass-derived platform molecules: From high added-value chemicals to fuels via aqueous-phase processing,” Chemical Society Reviews, vol. 40, no. 11. The Royal Society of Chemistry, pp. 5266–5281, 17-Nov-2011.; S. Fernando, S. Adhikari, C. Chandrapal, and N. Murali, “Biorefineries: Current status, challenges, and future direction,” Energy and Fuels, vol. 20, no. 4. American Chemical Society, pp. 1727–1737, Jul-2006.; L. R. Lynd, C. Wyman, M. Laser, D. Johnson, and R. Landucci, “Strategic Biorefinery Analysis: Analysis of Biorefineries,” Subcontract Rep. NREL/SR-510-35578, no. October, p. 40, 2005.; T. Werpy and G. Petersen, “Top Value Added Chemicals from Biomass Volume I-Results of Screening for Potential Candidates from Sugars and Synthesis Gas Produced by the Staff at Pacific Northwest National Laboratory (PNNL) National Renewable Energy Laboratory (NREL) Office of Biomass,” 2004.; K. Yan, T. Lafleur, C. Jarvis, and G. Wu, “Clean and selective production of γ-valerolactone from biomass-derived levulinic acid catalyzed by recyclable Pd nanoparticle catalyst,” J. Clean. Prod., vol. 72, pp. 230–232, Jun. 2014.; H. Mehdi, V. Fábos, R. Tuba, A. Bodor, L. T. Mika, and I. T. Horváth, “Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass: From sucrose to levulinic acid, γ-valerolactone, 1,4-pentanediol, 2-methyl-tetrahydrofuran, and alkanes,” in Topics in Catalysis, 2008, vol. 48, no. 1–4, pp. 49–54.; L. Deng, J. Li, D. M. Lai, Y. Fu, and Q. X. Guo, “Catalytic conversion of biomass-derived carbohydrates into γ-valerolactone without using an external h2 supply,” Angew. Chemie - Int. Ed., vol. 48, no. 35, pp. 6529–6532, Aug. 2009.; L. D. Almeida, A. L. A. Rocha, T. S. Rodrigues, and P. A. Robles-Azocar, “Highly selective hydrogenation of levulinic acid catalyzed by Ru on TiO2-SiO2 hybrid support,” Catal. Today, vol. 344, pp. 158–165, Mar. 2020.; H. Xiong, H. N. Pham, and A. K. Datye, “Hydrothermally stable heterogeneous catalysts for conversion of biorenewables,” Green Chemistry, vol. 16, no. 11. Royal Society of Chemistry, pp. 4627–4643, 01-Nov-2014.; Y. Zhang, X. Cui, F. Shi, and Y. Deng, “Nano-gold catalysis in fine chemical synthesis,” Chemical Reviews, vol. 112, no. 4. American Chemical Society, pp. 2467–2505, 11-Apr-2012.; W. Luo et al., “High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to γ-valerolactone,” Nat. Commun., vol. 6, no. 1, pp. 1–10, Mar. 2015.; H. Zhang, M. Zhao, T. Zhao, L. Li, and Z. Zhu, “Hydrogenative cyclization of levulinic acid into γ-valerolactone by photocatalytic intermolecular hydrogen transfer,” Green Chem., vol. 18, no. 8, pp. 2296–2301, Apr. 2016.; K. Dhanalaxmi et al., “Magnetic Nanohybrid Decorated Porous Organic Polymer: Synergistic Catalyst for High Performance Levulinic Acid Hydrogenation,” ACS Sustain. Chem. Eng., vol. 5, no. 1, pp. 1033–1045, Jan. 2017.; J. Feng et al., “Hydrogenation of levulinic acid to γ-valerolactone over Pd@UiO-66-NH2 with high metal dispersion and excellent reusability,” Microporous Mesoporous Mater., vol. 294, p. 109858, Mar. 2020.; A. M. R. Galletti, C. Antonetti, V. De Luise, and M. Martinelli, “A sustainable process for the production of γ-valerolactone by hydrogenation of biomass-derived levulinic acid,” Green Chem., vol. 14, no. 3, pp. 688–694, Mar. 2012.; B. Zhang et al., “A Robust Ru/ZSM-5 Hydrogenation Catalyst: Insights into the Resistances to Ruthenium Aggregation and Carbon Deposition,” ChemCatChem, vol. 9, no. 19, pp. 3646–3654, Oct. 2017.; O. Abdelrahman, A. Heyden, J. B.-A. catalysis, and undefined 2014, “Analysis of kinetics and reaction pathways in the aqueous-phase hydrogenation of levulinic acid to form γ-valerolactone over Ru/C,” ACS Publ.; S. C. Moldoveanu and V. David, “Short Overviews of the Main Analytical Techniques Containing a Separation Step,” in Selection of the HPLC Method in Chemical Analysis, Elsevier, 2017, pp. 55–85.; S. C. Moldoveanu and V. David, “Basic Information Regarding the HPLC Techniques,” in Selection of the HPLC Method in Chemical Analysis, Elsevier, 2017, pp. 87–187.; F. S. M. Hashemi et al., “Thermal atomic layer deposition of gold nanoparticles: Controlled growth and size selection for photocatalysis,” Nanoscale, vol. 12, no. 16, pp. 9005–9013, Apr. 2020.; C. Balachandran, J. F. Muñoz, and T. Arnold, “Characterization of alkali silica reaction gels using Raman spectroscopy,” Cem. Concr. Res., vol. 92, pp. 66–74, Feb. 2017.; B. Sadeghi, M. Mohammadzadeh, and B. Babakhani, “Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: Characterization and their stability,” J. Photochem. Photobiol. B Biol., vol. 148, pp. 101–106, Jul. 2015.; P. Wu, P. Bai, Z. Yan, and G. X. S. Zhao, “Gold nanoparticles supported on mesoporous silica: Origin of high activity and role of Au NPs in selective oxidation of cyclohexane,” Sci. Rep., vol. 6, no. 1, pp. 1–11, Jan. 2016.; R. A. Mitran, C. Matei, and D. Berger, “Correlation of mesoporous silica structural and morphological features with theoretical three-parameter model for drug release kinetics,” J. Phys. Chem. C, vol. 120, no. 51, pp. 29202–29209, 2016.; N. Syazaliyana Azali, N. Hidayatul Nazirah Kamarudin, J. Adira Jaafar, S. Najiha Timmiati, and M. Shaiful Sajab, “Modification of mesoporous silica nanoparticles with pH responsive polymer poly (2-vinylpyrrolidone) for the release of 5-Florouracil,” Mater. Today Proc., Oct. 2020.; S. A. Speakman, “Estimating Crystallite Size Using XRD Using XRD Using XRD Using XRD,” p. 105, 2011.; H. J. Yvon, “Raman Spectroscopy for Analysis and Monitoring,” Horiba Jobin Yvon, Raman Appl. Note, pp. 1–2, 2017.; A. S. Alshammari, “Heterogeneous gold catalysis: From discovery to applications,” Catalysts, vol. 9, no. 5. Multidisciplinary Digital Publishing Institute, p. 402, 29-Apr-2019.; I. Sádaba, M. López Granados, A. Riisager, and E. Taarning, “Deactivation of solid catalysts in liquid media: the case of leaching of active sites in biomass conversion reactions,” Green Chem., vol. 17, no. 8, pp. 4133–4145, Aug. 2015.; J. P. Lange, “Renewable Feedstocks: The Problem of Catalyst Deactivation and its Mitigation,” Angew. Chemie - Int. Ed., vol. 54, no. 45, pp. 13187–13197, Nov. 2015.; https://repositorio.unal.edu.co/handle/unal/81803; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
11
المؤلفون: Quesada Rumayor, Marina
المساهمون: Fernández Ferreras, Josefa, Universidad de Cantabria
المصدر: UCrea Repositorio Abierto de la Universidad de Cantabria
Universidad de Cantabria (UC)مصطلحات موضوعية: Serrín, Poder calorífico, Characterization, Conventional pyrolysis, Biomass recovery, Valorización de biomasa, Wood vinegar, Sawdust, Calorific value, Caracterización, Pirólisis convencional, Vinagre de madera
-
12Academic Journal
المؤلفون: Chávez-Sifontes, Marvin, Domine, Marcelo Eduardo
المساهمون: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química, Ministerio de Ciencia e Innovación, Consejo Superior de Investigaciones Científicas
مصطلحات موضوعية: Valorización de biomasa, Despolimerización de lignina, Biopolímeros, Biorefinería, Biomass valorization, Lignin depolymerization, Biopolymers, Bio-refinery
Relation: Avances en Ciencias e Ingeniería; info:eu-repo/grantAgreement/CSIC//2009801063/; http://www.exeedu.com/publishing.cl/av_cienc_ing/; urn:issn:0718-8706; http://hdl.handle.net/10251/80767
الاتاحة: http://hdl.handle.net/10251/80767
-
13Academic Journal
المؤلفون: Serrano Ruiz, Juan Carlos, Luque, Rafael
مصطلحات موضوعية: Biocombustibles, Valorización de biomasa, Moléculas plataforma, Catálisis heterogénea, Química verde
Relation: RYC-2009- 04199; CTQ2011‑28954-C02-02 e IPT‑2011‑2037-310000; P10‑FQM‑6711; Serrano Ruíz, J.C., Luque R. (2011) Biocombustibles líquidos: procesos y tecnologías Anales de Química de la RSEQ 107 (4) pp. 383-389; https://hdl.handle.net/20.500.12412/5038
-
14Dissertation/ Thesis
المؤلفون: Quesada Rumayor, Marina
المساهمون: Fernández Ferreras, Josefa, Universidad de Cantabria
مصطلحات موضوعية: Pirólisis convencional, Valorización de biomasa, Serrín, Vinagre de madera, Caracterización, Poder calorífico, Conventional pyrolysis, Biomass recovery, Sawdust, Wood vinegar, Characterization, Calorific value
Relation: http://hdl.handle.net/10902/22394
الاتاحة: http://hdl.handle.net/10902/22394
-
15Mechanism of glycerol dehydration and dehydrogenation: an experimental and computational correlation
المؤلفون: Astrid Sanchez, Catherine Batiot-Dupeyrat, Alexander Santamaría, Mauricio Velasquez, Juan F. Espinal
المصدر: DYNA, Volume: 86, Issue: 208, Pages: 126-135, Published: MAR 2019
Dyna, Vol 86, Iss 208, Pp 126-135 (2019)مصطلحات موضوعية: lcsh:TN1-997, glycerol dehydration, 020209 energy, education, 0211 other engineering and technologies, 02 engineering and technology, lcsh:Technology, glycerol dehydrogenation, Catalysis, chemistry.chemical_compound, Computational chemistry, Phase (matter), Glyceraldehyde, glycerol conversion, 021105 building & construction, Elementary reaction, 0202 electrical engineering, electronic engineering, information engineering, Glycerol, Dehydrogenation, valorización de biomasa, conversión de glicerol, deshidrogenación de glicerol, lcsh:Mining engineering. Metallurgy, hydroxyacetone formation mechanism, Chemistry, lcsh:T, Hydroxyacetone, General Engineering, deshidratación de glicerol, biomass valorization, Pyruvaldehyde, mecanismo de formación de hidroxiacetona
وصف الملف: text/html
-
16Academic JournalMechanism of glycerol dehydration and dehydrogenation: an experimental and computational correlation
المؤلفون: Velásquez, Mauricio, Batiot Dupeyrat, Catherine, Espinal, Juan F., Sánchez, Astrid, Santamaría, Alexander
المصدر: DYNA: revista de la Facultad de Minas. Universidad Nacional de Colombia. Sede Medellín, ISSN 0012-7353, Vol. 86, Nº. 208, 2019, pags. 126-135
مصطلحات موضوعية: hydroxyacetone formation mechanism, glycerol dehydration, glycerol dehydrogenation, glycerol conversion, biomass valorization, mecanismo de formación de hidroxiacetona, deshidratación de glicerol, deshidrogenación de glicerol, conversión de glicerol, valorización de biomasa
وصف الملف: application/pdf
-
17Dissertation/ Thesis
المؤلفون: Millet Estruch, Blanca
المساهمون: Iborra Chornet, Sara, Climent Olmedo, María José, Arias Carrascal, Karen Sulay, Universitat Politècnica de València. Departamento de Química - Departament de Química, Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
مصطلحات موضوعية: Valorización de biomasa, Catálisis heterogénea, Hidrogenación de 5-hidroximethilfurfural, Metales no nobles, 5-bis-(hidroximetil)furano (BHMF) y 2, 5-bis(hidroximetil)tetrahidrofurano (BHMTHF), Reactores de lecho fijo, Biomass valorization, Heterogeneous catalysis, Hydrogenation of 5-hydroxymethylfurfural, Non-noble metals, 5-bis-(hydroxymethyl)furan (BHMF), 5-bis(hydroxymethyl)tetrahydrofuran (BHMTHF), Continuous flow reactor, QUIMICA ORGANICA, Grado en Ingeniería Química-Grau en Enginyeria Química
Relation: http://hdl.handle.net/10251/188651
الاتاحة: http://hdl.handle.net/10251/188651
-
18Academic Journal
المؤلفون: Chávez Sifontes, Marvin, Domine, Marcelo Eduardo
المصدر: Avances en Ciencias e Ingeniería, ISSN 0718-8706, Vol. 4, Nº. 4, 2013, pags. 15-46
مصطلحات موضوعية: valorización de biomasa, despolimerización de lignina, biopolímeros, biorefinería, biomass valorization, lignin depolymerization, biopolymers, bio-refinery
وصف الملف: application/pdf
-
19
المصدر: RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instnameمصطلحات موضوعية: Biorefinería, Despolimerización de lignina, Biopolymers, Bio-refinery, Lignin depolymerization, Valorización de biomasa, Biopolímeros, Biomass valorization
وصف الملف: application/pdf
-
20
المؤلفون: Chávez-Sifontes, Marvin, Domine, Marcelo Eduardo
مصطلحات موضوعية: Biorefinería, Despolimerización de lignina, Biopolymers, Bio-refinery, Lignin depolymerization, Valorización de biomasa, Biopolímeros, Biomass valorization
وصف الملف: application/pdf