يعرض 1 - 15 نتائج من 15 نتيجة بحث عن '"upper bounded"', وقت الاستعلام: 0.49s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal

    المصدر: Civil Aviation High Technologies; № 202 (2014); 58-60 ; Научный вестник МГТУ ГА; № 202 (2014); 58-60 ; 2542-0119 ; 2079-0619 ; undefined

    وصف الملف: application/pdf

    Relation: https://avia.mstuca.ru/jour/article/view/151/77; Петрунин С.В. Использование метода последовательной сепарации для решения задач транспортного типа // Научный Вестник МГТУ ГА, серия Общество, экономика, образование. - 2004. - № 78(5). - С. 55 - 60.; Гольштейн Е.Г., Юдин Д.Б. Задачи линейного программирования транспортного типа. - М.: Изд-во «Наука», 1969.; Петрунин С.В. Решение транспортных задач ПС-методом при ограничениях на переменные // Статья в данном Вестнике.; Петрунин С.В., Большедворская Л.Г. Математическая модель организации курсов повышения квалифи-кации // Научный Вестник МГТУ ГА. - 2012. - № 178. - С. 153 - 157.; https://avia.mstuca.ru/jour/article/view/151; undefined

  6. 6
    Academic Journal

    المؤلفون: Anh, Lam Quoc, Hien, Dinh Vinh

    وصف الملف: application/pdf

    Relation: mr:MR3572459; zbl:Zbl 06674850; reference:[1] Mansour, M. Ait, Riahi, H.: Sensitivity analysis for abstract equilibrium problems.J. Math. Anal. Appl. 306 (2005), 684-691. MR 2136342, 10.1016/j.jmaa.2004.10.011; reference:[2] Mansour, M. Ait, Scrimali, L.: Hölder continuity of solutions to elastic traffic network models.J. Glob. Optim. 40 (2008), 175-184. MR 2373550, 10.1007/s10898-007-9190-9; reference:[3] Anh, L. Q., Khanh, P. Q.: Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems.J. Math. Anal. Appl. 294 (2004), 699-711. Zbl 1048.49004, MR 2061352, 10.1016/j.jmaa.2004.03.014; reference:[4] Anh, L. Q., Khanh, P. Q.: On the Hölder continuity of solutions to parametric multivalued vector equilibrium problems.J. Math. Anal. Appl. 321 (2006), 308-315. Zbl 1104.90041, MR 2236560, 10.1016/j.jmaa.2005.08.018; reference:[5] Anh, L. Q., Khanh, P. Q.: Semicontinuity of the approximate solution sets of multivalued quasiequilibrium problems.Numer. Funct. Anal. Optim. 29 (2008), 24-42. Zbl 1211.90243, MR 2387836, 10.1080/01630560701873068; reference:[6] Anh, L. Q., Khanh, P. Q.: Continuity of solution maps of parametric quasiequilibrium problems.J. Glob. Optim. 46 (2010), 247-259. Zbl 1187.90284, MR 2578813, 10.1007/s10898-009-9422-2; reference:[7] Anh, L. Q., Khanh, P. Q., Van, D. T. M.: Well-posedness without semicontinuity for parametric quasiequilibria and quasioptimization.Comput. Math. Appl. 62 (2011), 2045-2057. Zbl 1231.49022, MR 2834828, 10.1016/j.camwa.2011.06.047; reference:[8] Anh, L. Q., Khanh, P. Q., Van, D. T. M.: Well-posedness under relaxed semicontinuity for bilevel equilibrium and optimization problems with equilibrium constraints.J. Optim. Theory Appl. 153 (2012), 42-59. Zbl 1254.90244, MR 2892544, 10.1007/s10957-011-9963-7; reference:[9] Anh, L. Q., Khanh, P. Q., Van, D. T. M., Yao, J.-C.: Well-posedness for vector quasiequilibria.Taiwanese J. Math. 13 (2009), 713-737. Zbl 1176.49030, MR 2510823, 10.11650/twjm/1500405398; reference:[10] Ansari, Q. H., Flores-Bazán, F.: Generalized vector quasi-equilibrium problems with applications.J. Math. Anal. Appl. 277 (2003), 246-256. Zbl 1022.90023, MR 1954474, 10.1016/S0022-247X(02)00535-8; reference:[11] Aubin, J.-P., Frankowska, H.: Set-Valued Analysis.Modern Birkhäuser Classics Birkhäuser, Boston (2009). Zbl 1168.49014, MR 2458436; reference:[12] Bianchi, M., Kassay, G., Pini, R.: Well-posed equilibrium problems.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 460-468. Zbl 1180.49028, MR 2574955, 10.1016/j.na.2009.06.081; reference:[13] Bianchi, M., Pini, R.: A note on stability for parametric equilibrium problems.Oper. Rest. Lett. 31 (2003), 445-450. Zbl 1112.90082, MR 2003818, 10.1016/S0167-6377(03)00051-8; reference:[14] Bianchi, M., Pini, R.: Coercivity conditions for equilibrium problems.J. Optimization Theory Appl. 124 (2005), 79-92. Zbl 1064.49004, MR 2129262, 10.1007/s10957-004-6466-9; reference:[15] Bianchi, M., Pini, R.: Sensitivity for parametric vector equilibria.Optimization 55 (2006), 221-230. Zbl 1149.90156, MR 2238411, 10.1080/02331930600662732; reference:[16] Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems.Math. Stud. 63 (1994), 123-145. Zbl 0888.49007, MR 1292380; reference:[17] Burachik, R., Kassay, G.: On a generalized proximal point method for solving equilibrium problems in Banach spaces.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 6456-6464. MR 2965230, 10.1016/j.na.2012.07.020; reference:[18] Cap{ă}t{ă}, A., Kassay, G.: On vector equilibrium problems and applications.Taiwanese J. Math. 15 (2011), 365-380. Zbl 1247.90261, MR 2780290, 10.11650/twjm/1500406180; reference:[19] Chadli, O., Chiang, Y., Yao, J. C.: Equilibrium problems with lower and upper bounds.Appl. Math. Lett. 15 (2002), 327-331. Zbl 1175.90411, MR 1891555, 10.1016/S0893-9659(01)00139-2; reference:[20] Luca, M. De: Generalized quasi-variational inequalities and traffic equilibrium problem.Variational Inequalities and Network Equilibrium Problems F. Giannessi Proc. Conf., Erice, 1994 Plenum, New York (1995), 45-54. Zbl 0847.49007, MR 1331401; reference:[21] Ding, X.: Equilibrium problems with lower and upper bounds in topological spaces.Acta Math. Sci., Ser. B, Engl. Ed. 25 (2005), 658-662. Zbl 1082.49007, MR 2175931, 10.1016/S0252-9602(17)30205-9; reference:[22] Rouhani, B. Djafari, Tarafdar, E., Watson, P. J.: Existence of solutions to some equilibrium problems.J. Optimization Theory Appl. 126 (2005), 97-107. MR 2158433, 10.1007/s10957-005-2660-7; reference:[23] Fang, Y.-P., Hu, R., Huang, N.-J.: Well-posedness for equilibrium problems and for optimization problems with equilibrium constraints.Comput. Math. Appl. 55 (2008), 89-100. Zbl 1179.49007, MR 2378503, 10.1016/j.camwa.2007.03.019; reference:[24] Fang, Y.-P., Huang, N.-J., Yao, J.-C.: Well-posedness of mixed variational inequalities, inclusion problems and fixed point problems.J. Global Optim. 41 (2008), 117-133. Zbl 1149.49009, MR 2386599, 10.1007/s10898-007-9169-6; reference:[25] Flores-Baz{á}n, F.: Existence theorems for generalized noncoercive equilibrium problems: the quasi-convex case.SIAM J. Optim. 11 (2001), 675-690. MR 1814037, 10.1137/S1052623499364134; reference:[26] Giannessi, F.: Theorems of alternative, quadratic programs and complementarity problems.Variational Inequalities and Complementarity Problems Proc. Int. School Math., Erice, 1978 Wiley, Chichester (1980), 151-186. Zbl 0484.90081, MR 0578747; reference:[27] Hadamard, J.: Sur le problèmes aux dérivées partielles et leur signification physique.Bull. Univ. Princeton 13 (1902), 49-52 French.; reference:[28] Hai, N. X., Khanh, P. Q.: Existence of solutions to general quasiequilibrium problems and applications.J. Optim. Theory Appl. 133 (2007), 317-327. Zbl 1146.49004, MR 2333817, 10.1007/s10957-007-9170-8; reference:[29] Huang, N.-J., Long, X.-J., Zhao, C.-W.: Well-posedness for vector quasi-equilibrium problems with applications.J. Ind. Manag. Optim. 5 (2009), 341-349. Zbl 1192.49028, MR 2497238, 10.3934/jimo.2009.5.341; reference:[30] Ioffe, A., Lucchetti, R. E.: Typical convex program is very well posed.Math. Program. 104 (2005), 483-499. Zbl 1082.49030, MR 2179247, 10.1007/s10107-005-0625-0; reference:[31] Iusem, A. N., Kassay, G., Sosa, W.: On certain conditions for the existence of solutions of equilibrium problems.Math. Program. 116 (2009), 259-273. Zbl 1158.90009, MR 2421281, 10.1007/s10107-007-0125-5; reference:[32] Iusem, A. N., Sosa, W.: Iterative algorithms for equilibrium problems.Optimization 52 (2003), 301-316. Zbl 1176.90640, MR 1995678, 10.1080/0233193031000120039; reference:[33] Kimura, K., Liou, Y.-C., Wu, S.-Y., Yao, J.-C.: Well-posedness for parametric vector equilibrium problems with applications.J. Ind. Manag. Optim. 4 (2008), 313-327. Zbl 1161.90479, MR 2386077, 10.3934/jimo.2008.4.313; reference:[34] Lignola, M. B., Morgan, J.: {$\alpha$}-well-posedness for Nash equilibria and for optimization problems with Nash equilibrium constraints.J. Glob. Optim. 36 (2006), 439-459. Zbl 1105.49029, MR 2263177, 10.1007/s10898-006-9020-5; reference:[35] Long, X.-J., Huang, N.-J., Teo, K.-L.: Existence and stability of solutions for generalized strong vector quasi-equilibrium problem.Math. Comput. Modelling 47 (2008), 445-451. Zbl 1171.90521, MR 2378849, 10.1016/j.mcm.2007.04.013; reference:[36] Maugeri, A.: Variational and quasi-variational inequalities in network flow models. Recent developments in theory and algorithms.Variational Inequalities and Network Equilibrium Problems Proc. Conf., Erice, 1994 Plenum, New York (1995), 195-211. Zbl 0847.49010, MR 1331411; reference:[37] Muu, L. D., Oettli, W.: Convergence of an adaptive penalty scheme for finding constrained equilibria.Nonlinear Anal., Theory Methods Appl. 18 (1992), 1159-1166. Zbl 0773.90092, MR 1171603, 10.1016/0362-546X(92)90159-C; reference:[38] Noor, M. A., Noor, K. I.: Equilibrium problems and variational inequalities.Mathematica 47(70) (2005), 89-100. Zbl 1120.49008, MR 2165082; reference:[39] Revalski, J. P., Zhivkov, N. V.: Well-posed constrained optimization problems in metric spaces.J. Optimization Theory Appl. 76 (1993), 145-163. Zbl 0798.49031, MR 1202586, 10.1007/BF00952826; reference:[40] Sadeqi, I., Alizadeh, C. G.: Existence of solutions of generalized vector equilibrium problems in reflexive Banach spaces.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 2226-2234. Zbl 1233.90266, MR 2781752, 10.1016/j.na.2010.11.027; reference:[41] Smith, M. J.: The existence, uniqueness and stability of traffic equilibria.Transportation Res. Part B 13 (1979), 295-304. MR 0551841, 10.1016/0191-2615(79)90022-5; reference:[42] Strodiot, J. J., Nguyen, T. T. V., Nguyen, V. H.: A new class of hybrid extragradient algorithms for solving quasi-equilibrium problems.J. Glob. Optim. 56 (2013), 373-397. Zbl 1269.49013, MR 3063171, 10.1007/s10898-011-9814-y; reference:[43] Tikhonov, A. N.: On the stability of the functional optimization problem.U.S.S.R. Comput. Math. Math. Phys. 6 (1966), 28-33; translation from Zh. Vychisl. Mat. Mat. Fiz. 6 631-634 (1966), Russian. MR 0198308, 10.1016/0041-5553(66)90003-6; reference:[44] Wardrop, J. G.: Some theoretical aspects of road traffic research.Proceedings of the Institute of Civil Engineers, Part II (1952), 325-378.; reference:[45] Zhang, C.: A class of equilibrium problems with lower and upper bound.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods (electronic only) 63 (2005), e2377--e2385. MR 2160254, 10.1016/j.na.2005.03.019; reference:[46] Zhang, C., Li, J., Feng, Z.: The existence and the stability of solutions for equilibrium problems with lower and upper bounds.J. Nonlinear Anal. Appl. 2012 (2012), Article ID jnaa-00135, 13 pages.; reference:[47] Zolezzi, T.: Well-posedness criteria in optimization with application to the calculus of variations.Nonlinear Anal., Theory Methods Appl. 25 (1995), 437-453. Zbl 0841.49005, MR 1338796, 10.1016/0362-546X(94)00142-5; reference:[48] Zolezzi, T.: Well-posedness and optimization under perturbations.Ann. Oper. Res. 101 (2001), 351-361. Zbl 0996.90081, MR 1852519, 10.1023/A:1010961617177; reference:[49] Zolezzi, T.: On well-posedness and conditioning in optimization.ZAMM, Z. Angew. Math. Mech. 84 (2004), 435-443. Zbl 1045.49025, MR 2069910, 10.1002/zamm.200310113

  7. 7

    المساهمون: Universidad de Alicante. Departamento de Estadística e Investigación Operativa, Universidad Tecnológica de Mixteca. Instituto de Física y Matemáticas, Universidad de las Américas Puebla. Departamento de Física y Matemáticas, Universidad Nacional de Cuyo. Facultad de Ciencias Económicas, Programación Semi-infinita

    المصدر: Applied Mathematics & Optimization. 63:239-256

  8. 8
  9. 9
    Academic Journal

    المؤلفون: Горбачук, Василь

    وصف الملف: application/pdf

    Relation: Горбачук В. М. Обмежена зверху єдина логарифмічна функція доходу для визначення податкової ставки на доходи фізичних осіб / Горбачук В. М. // Наукові записки НаУКМА. - 2009. - Т. 94 : Економічні науки. - С. 23-27.; https://ekmair.ukma.edu.ua/handle/123456789/4015

  10. 10
    Dissertation/ Thesis

    Thesis Advisors: ASSIS, Francisco Marcos de., COHEN, Gérard., FREIRE, Raimundo Carlos Silvério., MAIA JUNIOR, Braulio., ALLÉAUME, Romain., LAVOR, Carlile Campos., ROCHA, Valdemar Cardoso da.

    المصدر: Biblioteca de Teses e Dissertações da UFCGUniversidade Federal de Campina GrandeUFCG.

    مصطلحات موضوعية: Engenharia Elétrica., In this thesis, we generalise Shannon’s zero-error capacity of discrete memoryless channels to quantum channels. We propose a new kind of capacity for transmitting classical information through a quantum channel. The quantum zero-error capacity (QZEC) is defined as being the maximum amount of classical information per channel use that can be sent over a noisy quantum channel, with the restriction that the probability of error must be equal to zero. The communication protocol restricts codewords to tensor products of input quantum states, whereas collective measurements can be performed between several channel outputs. Hence, our communication protocol is similar to the Holevo-Schumacher-Westmoreland protocol. We reformulate the problem of finding the QZEC in terms of graph theory. This equivalent definition allows us to demonstrate some properties of ensembles of quantum states and measurements attaining the QZEC. We show that the capacity of ad-dimensional quantum channel can always be achieved by using an ensemble of at mostd pure quantum states, and collective von Neumann measurements are necessary and sufficient to attain the channel capacity. We discuss whether the QZEC is a non-trivial generalisation of the classical zero-error capacity. By non-trivial we mean that there exist quantum channels requiring two or more channel uses in order to reach the capacity, and the capacity can only be attained by using ensembles of non-orthogonal quantum states at the channel input. We also calculate the QZEC of some quantum channels. We show that finding the QZEC of classical-quantum channels is a purely classical problem. In particular, we exhibit a quantum channel for which we claim the QZEC can only be reached by a set of non-orthogonal states. If the conjecture holds, it is possible to give an exact solution for the capacity, and construct an error-free quantum block code reaching the capacity. Finally, we demonstrate that the QZEC is upper bounded by the Holevo-Schumacher-Westmoreland capacity., Canais quânticos, Erro-zero de canais discretos, Erro-zero de canais quânticos, Canal quântico ruidoso, Protocolo de Holevo-Schumacher-Westmoreland, Capacidade erro zero de canais quânticos - CEZQ, Quantum channels, Telecomunicações

  11. 11

    المساهمون: ASSIS, Francisco Marcos de., COHEN, Gérard., FREIRE, Raimundo Carlos Silvério., MAIA JUNIOR, Braulio., ALLÉAUME, Romain., LAVOR, Carlile Campos., ROCHA, Valdemar Cardoso da.

    المصدر: Biblioteca Digital de Teses e Dissertações da UFCG
    Universidade Federal de Campina Grande (UFCG)
    instacron:UFCG

    مصطلحات موضوعية: Canais quânticos, In this thesis, we generalise Shannon’s zero-error capacity of discrete memoryless channels to quantum channels. We propose a new kind of capacity for transmitting classical information through a quantum channel. The quantum zero-error capacity (QZEC) is defined as being the maximum amount of classical information per channel use that can be sent over a noisy quantum channel, with the restriction that the probability of error must be equal to zero. The communication protocol restricts codewords to tensor products of input quantum states, whereas collective measurements can be performed between several channel outputs. Hence, our communication protocol is similar to the Holevo-Schumacher-Westmoreland protocol. We reformulate the problem of finding the QZEC in terms of graph theory. This equivalent definition allows us to demonstrate some properties of ensembles of quantum states and measurements attaining the QZEC. We show that the capacity of ad-dimensional quantum channel can always be achieved by using an ensemble of at mostd pure quantum states, and collective von Neumann measurements are necessary and sufficient to attain the channel capacity. We discuss whether the QZEC is a non-trivial generalisation of the classical zero-error capacity. By non-trivial we mean that there exist quantum channels requiring two or more channel uses in order to reach the capacity, and the capacity can only be attained by using ensembles of non-orthogonal quantum states at the channel input. We also calculate the QZEC of some quantum channels. We show that finding the QZEC of classical-quantum channels is a purely classical problem. In particular, we exhibit a quantum channel for which we claim the QZEC can only be reached by a set of non-orthogonal states. If the conjecture holds, it is possible to give an exact solution for the capacity, and construct an error-free quantum block code reaching the capacity. Finally, we demonstrate that the QZEC is upper bounded by the Holevo-Schumacher-Westmoreland capacity, Erro-zero de canais discretos, Quantum channels, Engenharia Elétrica, Protocolo de Holevo-Schumacher-Westmoreland, Capacidade erro zero de canais quânticos - CEZQ, Canal quântico ruidoso, Erro-zero de canais quânticos, Telecomunicações

  12. 12
    Academic Journal

    المؤلفون: COSTANTINI, Camillo

    المساهمون: C. COSTANTINI

    Relation: volume:2; firstpage:135; lastpage:139; journal:SET-VALUED ANALYSIS; http://hdl.handle.net/2318/4406

  13. 13
    Periodical
  14. 14
    Dissertation/ Thesis
  15. 15