يعرض 1 - 20 نتائج من 50 نتيجة بحث عن '"traffic flow characteristics"', وقت الاستعلام: 0.49s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المؤلفون: Popov, Stanislav

    المصدر: AUTOMOBILE ROADS AND ROAD CONSTRUCTION, 1(115), 41-48, (2024-04-02)

    Relation: oai:zenodo.org:13897220

  3. 3
    Academic Journal
  4. 4
  5. 5
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal

    المصدر: Sustainability; Volume 11; Issue 3; Pages: 830

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    Relation: Sustainable Transportation; https://dx.doi.org/10.3390/su11030830

  13. 13
    Academic Journal

    المصدر: Periodica Polytechnica Transportation Engineering; Vol. 43 No. 3 (2015); 111-119 ; 1587-3811 ; 0303-7800

    وصف الملف: application/pdf

  14. 14
    Academic Journal
  15. 15
    Conference
  16. 16
  17. 17
    Academic Journal

    وصف الملف: application/pdf

    Relation: Ke, Ruimin; Feng, Shuo; Cui, Zhiyong; Wang, Yinhai (2020). "Advanced framework for microscopic and lane‐level macroscopic traffic parameters estimation from UAV video." IET Intelligent Transport Systems 14(7): 724-734.; https://hdl.handle.net/2027.42/166282; https://dx.doi.org/10.7302/205; IET Intelligent Transport Systems; Teutsch M. Krüger W.: ‘ Detection, segmentation, and tracking of moving objects in UAV videos ’. 2012 IEEE Ninth Int. Conf. on Advanced Video and Signal‐Based Surveillance, Beijing, people’s Republic of China, 2012, pp. 313 – 318; Barmpounakis E.N. Vlahogianni E.I. Golias J.C.: ‘ Unmanned aerial aircraft systems for transportation engineering: current practice and future challenges ’, Int. J. Transp. Sci. Technol., 2016, 5, ( 3 ), pp. 111 – 122; Kanistras K. Martins G. Rutherford M.J. et al.: ‘ Survey of unmanned aerial vehicles (UAVs) for traffic monitoring ’, in Valavanis Kimon P. Vachtsevanos George J. (Eds.): ‘ Handbook of unmanned aerial vehicles ’ ( Springer, USA 2015 ), pp. 2643 – 2666; Du Y. Zhao C. Li F. et al.: ‘ An open data platform for traffic parameters measurement via multirotor unmanned aerial vehicles video ’, J. Adv. Transp., 2017, 2017, pp. 1 – 12; Coifman B. McCord M. Mishalani R.G. et al.: ‘ Surface transportation surveillance from unmanned aerial vehicles ’. Proc. of the 83rd Annual Meeting of the Transportation Research Board, Washington, DC, USA, 2004; Angel A. Hickman M. Mirchandani P. et al.: ‘ Methods of analyzing traffic imagery collected from aerial platforms ’, IEEE Trans. Intell. Transp. Syst., 2003, 4, ( 2 ), pp. 99 – 107; Zhou H. Kong H. Wei L. et al.: ‘ Efficient road detection and tracking for unmanned aerial vehicle ’, IEEE Trans. Intell. Transp. Syst., 2015, 16, ( 1 ), pp. 297 – 309; Freeman B.S. Al Matawah J.A. Al Najjar M. et al.: ‘ Vehicle stacking estimation at signalized intersections with unmanned aerial systems ’, Int. J. Transp. Sci. Technol., 2019, 8, pp. 231 – 249; Ke R. Lutin J. Spears J. et al.: ‘ A cost‐effective framework for automated vehicle‐pedestrian near‐miss detection through onboard monocular vision ’. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 2017; Ke R. Pan Z. Pu Z. et al.: ‘ Roadway surveillance video camera calibration using standard shipping container ’. 2017 Int. Smart Cities Conf. (ISC2), Wuxi, People’s Republic of China, 2017, pp. 1 – 6; McCord M. Yang Y. Jiang Z. et al.: ‘ Estimating annual average daily traffic from satellite imagery and air photos: empirical results ’, Transp. Res. Rec. J. Transp. Res. Board, 2003, 1855, pp. 136 – 142; Salvo G. Caruso L. Scordo A.: ‘ Urban traffic analysis through an UAV ’, Proc. Soc. Behav. Sci., 2014, 111, pp. 1083 – 1091; Khan M.A. Ectors W. Bellemans T. et al.: ‘ Unmanned aerial vehicle–based traffic analysis: methodological framework for automated multivehicle trajectory extraction ’, Transp. Res. Rec. J. Transp. Res. Board, 2017, 2626, pp. 25 – 33; Kaufmann S. Kerner B.S. Rehborn H. et al.: ‘ Aerial observations of moving synchronized flow patterns in over‐saturated city traffic ’, Transp. Res. C, Emerg. Technol., 2018, 86, pp. 393 – 406; Cao X. Wu C. Lan J. et al.: ‘ Vehicle detection and motion analysis in low‐altitude airborne video under urban environment ’, IEEE Trans. Circuits Syst. Video Technol., 2011, 21, ( 10 ), pp. 1522 – 1533; Ammour N. Alhichri H. Bazi Y. et al.: ‘ Deep learning approach for car detection in UAV imagery ’, Remote Sens., 2017, 9, ( 4 ), p. 312; Xu Y. Yu G. Wu X. et al.: ‘ An enhanced Viola‐Jones vehicle detection method from unmanned aerial vehicles imagery ’, IEEE Trans Intell. Transp. Syst., 2017, 18, ( 7 ), pp. 1845 – 1856; Shastry A.C. Schowengerdt R.A.: ‘ Airborne video registration and trafficflow parameter estimation ’, IEEE Trans. Intell. Transp. Syst., 2005, 6, ( 4 ), pp. 391 – 405; Cao X. Gao C. Lan J. et al.: ‘ Ego motion guided particle filter for vehicle tracking in airborne videos ’, Neurocomputing, 2014, 124, pp. 168 – 177; Ke R. Kim S. Li Z. et al.: ‘ Motion‐vector clustering for traffic speed detection from UAV video ’. 2015 IEEE First Int. Smart Cities Conf. (ISC2), Guadalajara, Mexico, 2015, pp. 1 – 5; Ke R.: ‘ A novel framework for real‐time traffic flow parameter estimation from aerial videos ’. 2016; Ke R. Li Z. Kim S. et al.: ‘ Real‐time bidirectional traffic flow parameter estimation from aerial videos ’, IEEE Trans. Intell. Transp. Syst., 2017, 18, ( 4 ), pp. 890 – 901; Chen P. Zeng W. Yu G. et al.: ‘ Surrogate safety analysis of pedestrian‐vehicle conflict at intersections using unmanned aerial vehicle videos ’, J. Adv. Transp., 2017, 2017, pp. 1 – 12; Ke R. Li Z. Tang J. et al.: ‘ Real‐time traffic flow parameter estimation from UAV video based on ensemble classifier and optical flow ’, IEEE Trans. Intell. Transp. Syst., 2018, 99, pp. 1 – 11; Li J. Chen S. Zhang F. et al.: ‘ An adaptive framework for multi‐vehicle ground speed estimation in airborne videos ’, Remote Sens., 2019, 11, ( 10 ), p. 1241; Barmpounakis E.N. Vlahogianni E.I. Golias J.C. et al.: ‘ How accurate are small drones for measuring microscopic traffic parameters? ’, Transp. Lett., 2019, 11, pp. 332 – 340; Kim E.‐J. Park H.‐C. Ham S.‐W. et al.: ‘ Extracting vehicle trajectories using unmanned aerial vehicles in congested traffic conditions ’, J. Adv. Transp., 2019, 2019, 16 pages; Feng S. Wang X. Sun H. et al.: ‘ A better understanding of long‐range temporal dependence of traffic flow time series ’, Phys. A Stat. Mech. Appl., 2018, 492, pp. 639 – 650; Rodríguez‐Canosa G.R. Thomas S. Del Cerro J. et al.: ‘ A real‐time method to detect and track moving objects (DATMO) from unmanned aerial vehicles (UAVs) using a single camera ’, Remote Sens., 2012, 4, ( 4 ), pp. 1090 – 1111; Tsao P. Ik T.‐U. Chen G.‐W. et al.: ‘ Stitching aerial images for vehicle positioning and tracking ’. 2018 IEEE Int. Conf. on Data Mining Workshops (ICDMW), Singapore, 2018, pp. 616 – 623; Breckon T.P. Barnes S.E. Eichner M.L. et al.: ‘ Autonomous real‐time vehicle detection from a medium‐level UAV ’. Proc. 24th Int. Conf. on Unmanned Air Vehicle Systems, Bristol, UK, 2009, pp. 21 – 29; Gomaa A. Abdelwahab M.M. Abo‐Zahhad M.: ‘ Real‐time algorithm for simultaneous vehicle detection and tracking in aerial view videos ’. 2018 IEEE 61st Int. Midwest Symp. on Circuits and Systems (MWSCAS), Windsor, Canada, 2018, pp. 222 – 225; Najiya K.V Archana M.: ‘ UAV video processing for traffic surveillance with enhanced vehicle detection ’. 2018 Second Int. Conf. on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 2018, pp. 662 – 668; Li J. Ye D.H. Chung T. et al.: ‘ Multi‐target detection and tracking from a single camera in unmanned aerial vehicles (UAVs) ’. 2016 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 2016, pp. 4992 – 4997; Carletti V. Greco A. Saggese A. et al.: ‘ Multi‐object tracking by flying cameras based on a forward‐backward interaction ’, IEEE Access, 2018, 6, pp. 43905 – 43919; Du D. Qi Y. Yu H. et al.: ‘ The unmanned aerial vehicle benchmark: object detection and tracking ’. Proc. of the European Conf. on Computer Vision (ECCV), Munich, Germany, 2018, pp. 370 – 386; Khan M. Ectors W. Bellemans T. et al.: ‘ Unmanned aerial vehicle‐based traffic analysis: a case study for shockwave identification and flow parameters estimation at signalized intersections ’, Remote Sens., 2018, 10, ( 3 ), p. 458; Zhu J. Sun K. Jia S. et al.: ‘ Urban traffic density estimation based on ultrahigh‐resolution UAV video and deep neural network ’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2018, 11, ( 12 ), pp. 4968 – 4981; Bewley A. Ge Z. Ott L. et al.: ‘ Simple online and realtime tracking ’. 2016 IEEE Int. Conf. on Image Processing (ICIP), Phoenix, AZ, USA, 2016, pp. 3464 – 3468; Lucas B.D. Kanade T. et al.: ‘ An iterative image registration technique with an application to stereo vision ’, 1981; Canny J.: ‘ A computational approach to edge detection ’, IEEE Trans. Pattern Anal. Mach. Intell., 1986, PAMI‐8, ( 6 ), pp. 679 – 698; Duda R.O. Hart P.E.: ‘ Use of the Hough transformation to detect lines and curves in pictures ’, 1971; Ester M. Kriegel H.‐P. Sander J. et al.: ‘ A density‐based algorithm for discovering clusters in large spatial databases with noise ’. Knowledge Discovery and Data Mining (KDD), Portland, OR, USA, 1996, pp. 226 – 231

  18. 18
  19. 19
    Academic Journal

    المؤلفون: George C. P. Tsai, Hsun-Jung Cho

    المصدر: Journal of the Eastern Asia Society for Transportation Studies. 2005, 6:1570

  20. 20
    Academic Journal

    المؤلفون: Masahiko KATAKURA

    المصدر: Doboku Gakkai Ronbunshu. 1992, 1991(440):33