يعرض 1 - 20 نتائج من 746 نتيجة بحث عن '"thermodynamic temperature"', وقت الاستعلام: 2.79s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: Marin M., Vlase S., Fudulu I.M.

    المصدر: Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, Vol 30, Iss 2, Pp 179-192 (2022)

    وصف الملف: electronic resource

  2. 2
    Academic Journal

    المؤلفون: Iu. A. Sild, Ю. А. Сильд

    المساهمون: Part of the research was carried out at VNIIM as part of the development work «Improvement of temperature unit standards in accordance with the new definition of kelvin in the range from 4.2 K to 3473 K» (2017–2019). The measurements were performed on the equipment of VNIIM., Часть исследований выполнена в ФГУП «ВНИИМ им. Д. И. Менделеева» в рамках опытно-конструкторской работы «Совершенствование эталонов единицы температуры в соответствии с новым определением кельвина в диапазоне от 4,2 К до 3473 К» (2017–2019 гг.). Измерения были выполнены на оборудовании ФГУП «ВНИИМ им. Д. И. Менделеева».

    المصدر: Measurement Standards. Reference Materials; Том 19, № 4 (2023); 7-15 ; Эталоны. Стандартные образцы; Том 19, № 4 (2023); 7-15 ; 2687-0886

    وصف الملف: application/pdf

    Relation: https://www.rmjournal.ru/jour/article/view/417/298; Походун А. И. О стратегии развития метрологического обеспечения измерений температуры и теплофизических величин в России // Приборы. 2015. № 8 (182). С. 1–6.; State and direction of development of the secondary standard of the unit of radiance and unit of infrared radiation temperature / K. A. Sharganov [et al.] // Measurement Techniques. 2015. Vol. 57. P. 1273–1275. https://doi.org/10.1007/s11018-015-0618-1; Походун А. И. Переопределение кельвина и перспективы совершенствования государственного первичного эталона единицы температуры в диапазоне от 0 до 3000 °C ГЭТ 34–2007 // Измерительная техника. 2017. № 12. С. 32–36.; Deviation of temperature determined by ITS-90 temperature scale from thermodynamic temperature measured by acoustic gas thermometry at 79.0000 K and at 83.8058 K / V. G. Kytin [et al.] // International Journal of Thermophysics. 2020. Vol. 41, Is. 6. P. 88. https://doi.org/10.1007/s10765-020-02663-2; Installation of relative acoustic gas thermometry in the low temperature range from 4.2 to 80 K / V. G. Kytin [et al.] // Measurement Techniques. 2020. Vol. 63, Is. 1. P. 45–52. https://doi.org/10.1007/s11018-020-01748-6; Realization of a new definition of kelvin on state primary standard of temperature unit GET 35–2021 in the temperature range from 0.3 to 273.16 K / V. G. Kytin [et al.] // Measurement Techniques. 2021. Vol. 64. P. 613–621. https://doi.org/10.1007/s11018-021-01980-8; Methods for the realization of ITS-90 fixed points: necessity of improvement / A. G. Ivanova [et al.] // Measurement Techniques. 2021. Vol. 64. P. 573–579. https://doi.org/10.1007/s11018-021-01973-7; State primary standard of temperature unit in the range 0–3200 °C GET 34–2020: Practical implementation of the new definition of kelvin / A. I. Pokhodun [et al.] // Measurement Techniques. 2021. Vol. 64. P. 541–549. https://doi.org/10.1007/s11018–021–01970-w; Походун А. И., Осадчий С. М. Переопределение кельвина и его последствия в практике измерений температуры // Законодательная и прикладная метрология. 2019. № 3 (160). С. 3–7.; Preparative steps towards the new definition of the kelvin in terms of the boltzmann constant / J. Fischer [et al.] // International Journal of Thermophysics. 2007. Vol. 28. P. 1753–1765. https://doi.org/10.1007/s10765-007-0253-4; The roles of the Mise en pratique for the definition of the kelvin / D. C. Ripple [et al.] // International Journal of Thermophysics. 2010. Vol. 31. P. 1975–1808. https://doi.org/10.1007/s10765-010-0837-2; Practical implementation of the miseen pratique for the definition of the kelvin above the silver point / G. Machin [et al.] // International Journal of Thermophysics. 2010. Vol. 31. P. 1779–1788. https://doi.org/10.1007/s10765-010-0834-5; Primary radiometry for the mise-en-pratique for the definition of the kelvin: the hybrid method / E. R. Woolliams [et al.] // International Journal of Thermophysics. 2011. Vol. 32. P. 1–11. https://doi.org/10.1007/s10765–011–0924-z; Absolute radiometry for the MeP-K: the irradiance measurement method / J. Hartmann [et al.] // International Journal of Thermophysics. 2011. Vol. 32. P. 1707–1718. https://doi.org/10.1007/s10765-011-1018-7; Thermodynamic radiation thermometry using radiometers calibrated for radiance responsivity / H. W. Yoon [et al.] // International Journal of Thermophysics. 2011. Vol. 32. P. 2217–2229. https://doi.org/10.1007/s10765-011-1056-1; Radiometric observation of melting and freezing plateaus for a series of metal-carbon eutectic points in the range 1330 °C to 1950 °C / Y. Yamada [et al.] // Metrologia. 1999. Vol. 36, Is. 3. P. 207–209. https://doi.org/10.1088/0026–1394/36/3/6; High-temperature fixed points in the range 1150 °C to 2500 °C using metal-carbon eutectics / Y. Yamada [et al.] // Metrologia. 2001. Vol. 38, Is. 3. P. 213–221. https://doi.org/10.1088/0026–1394/38/3/3; Realizing fixed points above the copper point up to 2500 °C using metal-graphite eutectics / Y. Yamada [et al.] // AIST Bulletin of Metrology. 2002. Vol. 1, Is. 3. P. 533–540.; Yamada Y., Bloembergen P. On the properties of hyper-eutectic metal-carbon fixed points // AIST Bulletin of Metrology. 2006. Vol. 5. P. 157–162.; Еxperience of construction and study of Pt-C eutectic in VNIIM and cooperation with LNE-INM / M. S. Matveyev [et al.] // International Journal of Thermophysics. 2009. Vol. 30, Is. 1. P. 47–58. https://doi.org/10.1007/s10765–008–0431-z; Comparison of pyrometric Co-C and Re-C eutectic-point cells between VNIIM and LNE-CNAM / M. Sadli [et al.] // International Journal of Thermophysics. 2011. Vol. 32, Is. 11–12. P. 2657–2670. https://doi.org/10.1007/s10765-011-1079-7; Comparative investigations of cobalt-carbon eutectic high-temperature fixed point cells constructed at the VNIIM and VNIIOFI / B. B. Khlevnoy [et al.] // Measurement Techniques. 2013. Vol. 56. P. 72–78. https://doi.org/10.1007/s11018–013–0161-x; Thermodynamic temperature assignment to the point of inflection of the melting curve of high temperature fixed points / E. Woolliams [et al.] // Philosophical Transactions of the Royal Society A. 2016. Vol.374. P. 20150044. http://dx.doi.org/10.1098/rsta.2015.0044; Saunders P., White D. R. Saunders P. Interpolation errors for radiation thermometry // Metrologia. 2004. Vol. 41. Р. 41–46. https://doi.org/10.1088/0026–1394/41/1/006; Saunders P., White D. R. Physical basis of interpolation equations for radiation thermometry // Metrologia. 2003. Vol. 40, Is. 4. Р. 195–203. https://doi.org/10.1088/0026–1394/40/4/309; Фотоэлектрический спектрокомпаратор нового поколения для прецизионных измерений в области радиационной термометрии / М. С. Матвеев [и др.] // Приборы. 2008. № 10. С. 30–38.; The Reference monochromatic thermometer for the HTFPs investigation / Yu. A. Sild [et al.] // TEMPMEKO 2016: abstracts XIII international symposium on temperature and thermal measurements in industry and science, Zakopane, Poland, 26.06. – 1.07.2016. 2016. P. 116–117.; Khlevnoy B., Grigoryeva I., Ibragimov N. New method of filling of HTFP cells // High Temperature Fixed Points Solutions for Research and Industry (HTFP 2008): Int. Workshop, KRISS, Daejeon, Korea. 2008. P. 16.; Sild Y. A. Methods of filling high-temperature fixed-point cells based on eutectic alloys // Measurement Techniques. 2012. Vol. 55. P. 936–940. https://doi.org/10.1007/s11018-012-0064-2; Khlevnoy B. B., Grigoryeva I. A., Ibragimov N. A. New method of filling of high-temperature fixed-point cells based on metal-carbon eutectics / Peritectics // International Journal of Thermophysics. 2011. Vol. 32. P. 1763–1772. https://doi.org/10.1007/s10765-011-0998-7; CCT-WG5 on radiation thermometry, uncertainty budgets for realisation of scales by radiation thermometry / J. Fischer [et al.] // CCT Working document CCT/03–03. BIPM, Sèvres Cedex. 2003.; Uncertainty budgets for realization of ITS-90 by radiation thermometry / J. Fischer [et al.] // Temperature Its Measurement and Control in Science and Industry: AIP Conference Proceedings, Chicago. 2003. Vol. 7. P. 631–638.; https://www.rmjournal.ru/jour/article/view/417

  3. 3
    Academic Journal
  4. 4
  5. 5
    Academic Journal

    المساهمون: Machin, G., Sadli, M., Pearce, J., Engert, J., Gavioso, R. M.

    Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:000858919500004; volume:201; journal:MEASUREMENT; https://hdl.handle.net/11696/79584; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85135867902

  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal

    المساهمون: Madonna Ripa, D, Imbraguglio, D, Gaiser, C, Steur, P P M, Giraudi, D, Fogliati, M, Bertinetti, M, Lopardo, G, Dematteis, R, Gavioso, R M

    Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:000632888900001; volume:58; issue:2; firstpage:025008; journal:METROLOGIA; http://hdl.handle.net/11696/73210; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85103413745

  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
    Academic Journal
  17. 17
    Academic Journal

    المؤلفون: Struchtrup, Henning

    وصف الملف: application/pdf

    Relation: Struchtrup, H. (2019). Efficiencies and Work Losses for Cycles Interacting with Reservoirs of Apparent Negative Temperatures, Entropy 21(8): 749. https://doi.org/10.3390/e21080749; https://doi.org/10.3390/e21080749; http://hdl.handle.net/1828/11023

  18. 18
    Academic Journal

    المساهمون: Rourke, Patrick M C, Gaiser, Christof, Gao, Bo, Ripa, Daniele Madonna, Moldover, Michael R, Pitre, Laurent, Underwood, Robin J

    Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:000465330900001; volume:56; issue:3; firstpage:032001; journal:METROLOGIA; http://hdl.handle.net/11696/61730; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85068347773

  19. 19
    Academic Journal
  20. 20