يعرض 1 - 20 نتائج من 82 نتيجة بحث عن '"temperature variance"', وقت الاستعلام: 0.80s تنقيح النتائج
  1. 1
    Dissertation/ Thesis
  2. 2
    Academic Journal

    المصدر: Case Studies in Thermal Engineering

    وصف الملف: application/pdf

    Relation: Nimmy, PM, Nagaraja, KV, Srilatha, P, Karthik, K, Sowmya, G, Kumar, RSV, Khan, U, Hussain, SM, Hendy, A & Ali, M 2023, 'Implication of radiation on the thermal behavior of a partially wetted dovetail fin using an artificial neural network', Case Studies in Thermal Engineering, Том. 51, 103552. https://doi.org/10.1016/j.csite.2023.103552; Nimmy, P. M., Nagaraja, K. V., Srilatha, P., Karthik, K., Sowmya, G., Kumar, R. S. V., Khan, U., Hussain, S. M., Hendy, A., & Ali, M. (2023). Implication of radiation on the thermal behavior of a partially wetted dovetail fin using an artificial neural network. Case Studies in Thermal Engineering, 51, [103552]. https://doi.org/10.1016/j.csite.2023.103552; Final; All Open Access, Gold; https://www.scopus.com/inward/record.uri?eid=2-s2.0-85173209342&doi=10.1016%2fj.csite.2023.103552&partnerID=40&md5=eec3dab262857ed1f8d5e84484d73e58; https://doi.org/10.1016/j.csite.2023.103552; http://elar.urfu.ru/handle/10995/130838; 85173209342; 001088623800001

  3. 3
    Academic Journal

    المصدر: Atmosphere; Volume 14; Issue 2; Pages: 199

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    Relation: Atmospheric Techniques, Instruments, and Modeling; https://dx.doi.org/10.3390/atmos14020199

  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal

    المصدر: Manenti , T , Kjærsgaard , A , Schou , T M , Pertoldi , C , Moghadam , N N & Loeschcke , V 2021 , ' Responses to developmental temperature fluctuation in life history traits of five drosophila species (Diptera : Drosophilidae) from different thermal niches ' , Insects , vol. 12 , no. 10 , 925 . https://doi.org/10.3390/insects12100925

    Relation: https://pure.au.dk/portal/da/publications/responses-to-developmental-temperature-fluctuation-in-life-history-traits-of-five-drosophila-species-diptera(aed74fc0-6d39-46c8-93c3-d6971efe5791).html

    الاتاحة: https://pure.au.dk/portal/da/publications/responses-to-developmental-temperature-fluctuation-in-life-history-traits-of-five-drosophila-species-diptera(aed74fc0-6d39-46c8-93c3-d6971efe5791).html
    https://doi.org/10.3390/insects12100925
    http://www.scopus.com/inward/record.url?scp=85117574093&partnerID=8YFLogxK

  7. 7
    Academic Journal

    وصف الملف: application/pdf; fulltext

    Relation: Insects; 10; 12; Manenti, T., Kjærsgaard, A., Munk Schou, T., Pertoldi, C., Moghadam, N. N., & Loeschcke, V. (2021). Responses to Developmental Temperature Fluctuation in Life History Traits of Five Drosophila Species (Diptera: Drosophilidae) from Different Thermal Niches. Insects , 12 (10), Article 925. https://doi.org/10.3390/insects12100925; CONVID_101945204

  8. 8
    Academic Journal

    المساهمون: Mécanique des Fluides, Energies et Environnement (EDF R&D MFEE), EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Computational AGility for internal flows sImulations and compaRisons with Experiments (CAGIRE), Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Pau et des Pays de l'Adour (UPPA), Laboratoire de Mathématiques et de leurs Applications Pau (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), ANRT (CIFRE 2017/0079), ANR-17-CE06-0005,MONACO_2025,Modélisation de la convection naturelle : un défi pour l'ambition Tout Numérique 2025(2017)

    المصدر: ISSN: 0022-1120.

  9. 9
    Conference

    المساهمون: Jozef Stefan Institute Ljubljana (IJS), Mécanique des Fluides, Energies et Environnement EDF R & D = Fluid Mechanics, Energy and Environment EDF R & D (EDF R&D MFEE), EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF)

    المصدر: 17th International Meeting on Nuclear Reactor Thermal Hydraulics (NURETH17)
    https://hal.science/hal-01631515
    17th International Meeting on Nuclear Reactor Thermal Hydraulics (NURETH17), Sep 2017, Xi'An, China

    جغرافية الموضوع: Xi'An, China

  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
  14. 14
    Academic Journal
  15. 15
  16. 16

    المساهمون: Mécanique des Fluides, Energies et Environnement (EDF R&D MFEE), EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Computational AGility for internal flows sImulations and compaRisons with Experiments (CAGIRE), Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Pau et des Pays de l'Adour (UPPA), Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), ANRT (CIFRE 2017/0079), ANR-17-CE06-0005,MONACO_2025,Modélisation de la convection naturelle : un défi pour l'ambition Tout Numérique 2025(2017)

    المصدر: Journal of Fluid Mechanics
    Journal of Fluid Mechanics, 2020, 905 (A1), pp.1-34. ⟨10.1017/jfm.2020.683⟩
    Journal of Fluid Mechanics, Cambridge University Press (CUP), 2020, 905 (A1), pp.1-34. ⟨10.1017/jfm.2020.683⟩

  17. 17
    Academic Journal

    وصف الملف: application/pdf

    Relation: Luecke, Conrad A.; Arbic, Brian K.; Richman, James G.; Shriver, Jay F.; Alford, Matthew H.; Ansong, Joseph K.; Bassette, Steven L.; Buijsman, Maarten C.; Menemenlis, Dimitris; Scott, Robert B.; Timko, Patrick G.; Voet, Gunnar; Wallcraft, Alan J.; Zamudio, Luis (2020). "Statistical Comparisons of Temperature Variance and Kinetic Energy in Global Ocean Models and Observations: Results From Mesoscale to Internal Wave Frequencies." Journal of Geophysical Research: Oceans 125(5): n/a-n/a.; https://hdl.handle.net/2027.42/155531; Journal of Geophysical Research: Oceans; Rocha, C. B., Gille, S. T., Chereskin, T. K., & Menemenlis, D. ( 2016 ). Seasonality of submesoscale dynamics in the Kuroshio Extension. Geophysical Research Letters, 43, 11,304 – 11,311. https://doi.org/10.1002/2016GL071349; Large, W. G., McWilliams, J. C., & Doney, S. C. ( 1994 ). Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32 ( 4 ), 363 – 403. https://doi.org/10.1029/94RG01872; Large, W., & Yeager, S. ( 2004 ). Diurnal to decadal global forcing for ocean and sea‐ice models: The data sets and flux climatologies (NCAR technical notes). National Center for Atmospheric Research.; Losch, M., Menemenlis, D., Campin, J.‐M., Heimbach, P., & Hill, C. ( 2010 ). On the formulation of sea‐ice models. Part 1: Effects of different solver implementations and parameterizations. Ocean Modelling, 33 ( 1 ), 129 – 144. https://doi.org/10.1016/j.ocemod.2009.12.008; Luecke, C. A., Arbic, B. K., Bassette, S. L., Richman, J. G., Shriver, J. F., Alford, M. H., Smedstad, O. M., Timko, P. G., Trossman, D. S., & Wallcraft, A. J. ( 2017 ). The global mesoscale eddy available potential energy field in models and observations. Journal of Geophysical Research: Oceans, 122, 9126 – 9143. https://doi.org/10.1002/2017JC013136; Smith, W. H. F., & Sandwell, D. T. ( 1997 ). Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277 ( 5334 ), 1956 – 1962. https://doi.org/10.1126/science.277.5334.1956; MacKinnon, J. A., Zhao, Z., Whalen, C. B., Waterhouse, A. F., Trossman, D. S., Sun, O. M., Laurent, L. C. S. t., Simmons, H. L., Polzin, K., Pinkel, R., Pickering, A., Norton, N. J., Nash, J. D., Musgrave, R., Merchant, L. M., Melet, A. V., Mater, B., Legg, S., Large, W. G., Kunze, E., Klymak, J. M., Jochum, M., Jayne, S. R., Hallberg, R. W., Griffies, S. M., Diggs, S., Danabasoglu, G., Chassignet, E. P., Buijsman, M. C., Bryan, F. O., Briegleb, B. P., Barna, A., Arbic, B. K., Ansong, J. K., & Alford, M. H. ( 2017 ). Climate process team on internal wave‐driven ocean mixing. Bulletin of the American Meteorological Society, 98 ( 11 ), 2429 – 2454. https://doi.org/10.1175/BAMS-D-16-0030.1; Maltrud, M. E., & McClean, J. L. ( 2005 ). An eddy resolving global 1/10 ocean simulation. Ocean Modelling, 8 ( 1‐2 ), 31 – 54. https://doi.org/10.1016/j.ocemod.2003.12.001; Marshall, J., Adcroft, A., Hill, C., Perelman, L., & Heisey, C. ( 1997 ). A finite‐volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research, 102 ( C3 ), 5753 – 5766. https://doi.org/10.1029/96JC02775; Melet, A., Legg, S., & Hallberg, R. ( 2016 ). Climatic impacts of parameterized local and remote tidal mixing. Journal of Climate, 29 ( 10 ), 3473 – 3500. https://doi.org/10.1175/JCLI-D-15-0153.1; Menemenlis, D., Campin, J.‐M., Heimbach, P., Hill, C., Lee, T., Nguyen, A., Schodlok, M., & Zhang, H. ( 2008 ). ECCO2: High resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter, 31, 13 – 21.; Müller, M., Arbic, B. K., Richman, J. G., Shriver, J. F., Kunze, E. L., Scott, R. B., Wallcraft, A. J., & Zamudio, L. ( 2015 ). Toward an internal gravity wave spectrum in global ocean models. Geophysical Research Letters, 42, 3474 – 3481. https://doi.org/10.1002/2015GL063365; Munk, W., & Wunsch, C. ( 1998 ). Abyssal recipes II: Energetics of tidal and wind mixing. Deep‐Sea Research I, 45, 1977 – 2010.; Ngodock, H. E., Souopgui, I., Wallcraft, A. J., Richman, J. G., Shriver, J. F., & Arbic, B. K. ( 2016 ). On improving the accuracy of the M 2 barotropic tides embedded in a high‐resolution global ocean circulation model. Ocean Modelling, 97, 16 – 26. https://doi.org/10.1016/j.ocemod.2015.10.011; Penduff, T., Barnier, B., Molines, J.‐M., & Madec, G. ( 2006 ). On the use of current meter data to assess the realism of ocean model simulations. Ocean Modelling, 11, 399 – 416.; Ponte, R. M., Chaudhuri, A. H., & Vinogradov, S. V. ( 2015 ). Long‐period tides in an atmospherically driven, stratified ocean. Journal of Physical Oceanography, 45 ( 7 ), 1917 – 1928. https://doi.org/10.1175/JPO-D-15-0006.1; Qiu, B., Chen, S., Klein, P., Wang, J., Torres, H., Fu, L.‐L., & Menemenlis, D. ( 2018 ). Seasonality in transition scale from balanced to unbalanced motions in the world ocean. Journal of Physical Oceanography, 48 ( 3 ), 591 – 605. https://doi.org/10.1175/JPO-D-17-0169.1; Ray, R. D. ( 1999 ). A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2 (pp. 1 ). distributor Greenbelt M Springfield Va: National Aeronautics and Space Administration, Goddard Space Flight Center; National Technical Information Service,.; Rocha, C. B., Chereskin, T. K., Gille, S. T., & Menemenlis, D. ( 2016 ). Mesoscale to submesoscale wavenumber spectra in Drake Passage. Journal of Physical Oceanography, 46 ( 2 ), 601 – 620. https://doi.org/10.1175/JPO-D-15-0087.1; Savage, A. C., Arbic, B. K., Alford, M. H., Ansong, J. K., Farrar, J. T., Menemenlis, D., O’Rourke, A. K., Richman, J. G., Shriver, J. F., Voet, G., Wallcraft, A. J., & Zamudio, L. ( 2017 ). Spectral decomposition of internal gravity wave sea surface height in global models. Journal of Geophysical Research: Oceans, 122, 7803 – 7821. https://doi.org/10.1002/2017JC013009; Savage, A. C., Arbic, B. K., Richman, J. G., Shriver, J. F., Alford, M. H., Buijsman, M. C., Thomas Farrar, J., Sharma, H., Voet, G., Wallcraft, A. J., & Zamudio, L. ( 2017 ). Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies. Journal of Geophysical Research: Oceans, 122, 2519 – 2538. https://doi.org/10.1002/2016JC012331; Scott, R. B., Arbic, B. K., Chassignet, E. P., Coward, A. C., Maltrud, M., Merryfield, W. J., Srinivasan, A., & Varghese, A. ( 2010 ). Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records. Ocean Modelling, 32, 157 – 169.; Shriver, J. F., Arbic, B. K., Richman, J. G., Ray, R. D., Metzger, E. J., Wallcraft, A. J., & Timko, P. G. ( 2012 ). An evaluation of the barotropic and internal tides in a high‐resolution global ocean circulation model. Journal of Geophysical Research, 117, C10024. https://doi.org/10.1029/2012JC008170; Silverthorne, K. E., & Toole, J. M. ( 2009 ). Seasonal kinetic energy variability of near‐inertial motions. Journal of Physical Oceanography, 39 ( 4 ), 1035 – 1049. https://doi.org/10.1175/2008JPO3920.1; Simmons, H. L., & Alford, M. H. ( 2012 ). Simulating the long‐range swell of internal waves generated by ocean storms. Oceanography, 25, 30 – 41.; Skiba, A. W., Zeng, L., Arbic, B. K., Müller, M., & Godwin, W. J. ( 2013 ). On the resonance and shelf/open‐ocean coupling of the global diurnal tides. Journal of Physical Oceanography, 43 ( 7 ), 1301 – 1324. https://doi.org/10.1175/JPO-D-12-054.1; Stammer, D., Ray, R. D., Andersen, O. B., Arbic, B. K., Bosch, W., Carrére, L., Cheng, Y., Chinn, D. S., Dushaw, B. D., Egbert, G. D., Erofeeva, S. Y., Fok, H. S., Green, J. A. M., Griffiths, S., King, M. A., Lapin, V., Lemoine, F. G., Luthcke, S. B., Lyard, F., Morison, J., Müller, M., Padman, L., Richman, J. G., Shriver, J. F., Shum, C. K., Taguchi, E., & Yi, Y. ( 2014 ). Accuracy assessment of global barotropic ocean tide models. Reviews of Geophysics, 52, 243 – 282. https://doi.org/10.1002/2014RG000450; Su, Z., Wang, J., Klein, P., Thompson, A. F., & Menemenlis, D. ( 2018 ). Ocean submesoscales as a key component of the global heat budget. Nature Communications, 9 ( 1 ), 775. https://doi.org/10.1038/s41467-018-02983-w; Thoppil, P. G., Richman, J. G., & Hogan, P. J. ( 2011 ). Energetics of a global ocean circulation model compared to observations. Geophysical Research Letters, 38, L15607. https://doi.org/10.1029/2011GL048347; Timko, P. G., Arbic, B. K., Richman, J. G., Scott, R. B., Metzger, E. J., & Wallcraft, A. J. ( 2012 ). Skill tests of three‐dimensional tidal currents in a global ocean model: A look at the North Atlantic. Journal of Geophysical Research, 117, C08014. https://doi.org/10.1029/2011JC007617; Timko, P. G., Arbic, B. K., Richman, J. G., Scott, R. B., Metzger, E. J., & Wallcraft, A. J. ( 2013 ). Skill testing a three‐dimensional global tide model to historical current meter records. Journal of Geophysical Research: Oceans, 118, 6914 – 6933. https://doi.org/10.1002/2013JC009071; Torres, H. S., Klein, P., Menemenlis, D., Qiu, B., Su, Z., Wang, J., Chen, S., & Fu, L.‐L. ( 2018 ). Partitioning ocean motions into balanced motions and internal gravity waves: A modeling study in anticipation of future space missions. Journal of Geophysical Research: Oceans, 123, 8084 – 8105. https://doi.org/10.1029/2018JC014438; Wang, J., Fu, L.‐L., Qiu, B., Menemenlis, D., Farrar, J. T., Chao, Y., Thompson, A. F., & Flexas, M. M. ( 2018 ). An observing system simulation experiment for the calibration and validation of the surface water ocean topography sea surface height measurement using in situ platforms. Journal of Atmospheric and Oceanic Technology, 35 ( 2 ), 281 – 297. https://doi.org/10.1175/JTECH-D-17-0076.1; Wang, J., Fu, L.‐L., Torres, H. S., Chen, S., Qiu, B., & Menemenlis, D. ( 2019 ). On the spatial scales to be resolved by the surface water and ocean topography Ka‐band radar interferometer. Journal of Atmospheric and Oceanic Technology, 36 ( 1 ), 87 – 99. https://doi.org/10.1175/JTECH-D-18-0119.1; Weis, P., Thomas, M., & Sündermann, J. ( 2008 ). Broad frequency tidal dynamics simulated by a high‐resolution global ocean tide model forced by ephemerides. Journal of Geophysical Research, 113, C10029. https://doi.org/10.1029/2007JC004556; Wright, C. J., Scott, R. B., Ailliot, P., & Furnival, D. ( 2014 ). Lee wave generation rates in the deep ocean. Geophysical Research Letters, 41, 2434 – 2440. https://doi.org/10.1002/2013GL059087; Yu, X., Ponte, A. L., Elipot, S., Menemenlis, D., Zaron, E. D., & Abernathey, R. ( 2019 ). Surface kinetic energy distributions in the global oceans from a high‐resolution numerical model and surface drifter observations. Geophysical Research Letters, 46, 9757 – 9766. https://doi.org/10.1029/2019GL083074; Ansong, J. K., Arbic, B. K., Alford, M. H., Buijsman, M. C., Shriver, J. F., Zhao, Z., Richman, J. G., Simmons, H. L., Timko, P. G., Wallcraft, A. J., & Zamudio, L. ( 2017 ). Semidiurnal internal tide energy fluxes and their variability in a global ocean model and moored observations. Journal of Geophysical Research: Oceans, 122, 1882 – 1900. https://doi.org/10.1002/2016JC012184; Ansong, J. K., Arbic, B. K., Buijsman, M. C., Richman, J. G., Shriver, J. F., & Wallcraft, A. J. ( 2015 ). Indirect evidence for substantial damping of low‐mode internal tides in the open ocean. Journal of Geophysical Research: Oceans, 120, 6057 – 6071. https://doi.org/10.1002/2015JC010998; Arbic, B. K., Alford, M. H., Ansong, J. K., Buijsman, M. C., Ciotti, R. B., Farrar, J. T., Hallberg, R. W., Henze, C. E., Hill, C. N., Luecke, C. A., Menemenlis, D., Metzger, E. J., Müller, M., Nelson, A. D., Nelson, B. C., Ngodock, H. E., Ponte, R. M., Richman, J. G., Savage, A. C., Scott, R. B., Shriver, J. F., Simmons, H. L., Souopgui, I., Timko, P. G., Wallcraft, A. J., Zamudio, L., & Zhao, Z. ( 2018 ). A Primer on Global Internal Tide and Internal Gravity Wave Continuum Modeling in HYCOM and MITgcm. New Frontiers In Operational Oceanography. Retrieved from http://purl.flvc.org/fsu/fd/FSU_libsubv1_scholarship_submission_1536242074_55feafcc; Arbic, B. K., Richman, J. G., Shriver, J. F., Timko, P. G., Metzger, E. J., & Wallcraft, A. J. ( 2012 ). Global modeling of internal tides within an eddying ocean general circulation model. Oceanography, 25, 20 – 29. https://doi.org/10.5670/oceanog.2012.38; Arbic, B. K., Wallcraft, A. J., & Metzger, E. J. ( 2010 ). Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modelling, 32, 175 – 187. https://doi.org/10.1016/j.ocemod.2010.01.007; Buijsman, M. C., Ansong, J. K., Arbic, B. K., Richman, J. G., Shriver, J. F., Timko, P. G., Wallcraft, A. J., Whalen, C. B., & Zhao, Z. ( 2016 ). Impact of parameterized internal wave drag on the semidiurnal energy balance in a global ocean circulation model. Journal of Physical Oceanography, 46 ( 5 ), 1399 – 1419. https://doi.org/10.1175/JPO-D-15-0074.1; Buijsman, M., Arbic, B., Green, J., Helber, R., Richman, J., Shriver, J., Timko, P., & Wallcraft, A. ( 2015 ). Optimizing internal wave drag in a forward barotropic model with semidiurnal tides. Ocean Modelling, 85, 42 – 55. https://doi.org/10.1016/j.ocemod.2014.11.003; Capet, X., McWilliams, J. C., Molemaker, M. J., & Shchepetkin, A. F. ( 2008 ). Mesoscale to submesoscale transition in the California current system. Part III: Energy balance and flux. Journal of Physical Oceanography, 38 ( 10 ), 2256 – 2269. https://doi.org/10.1175/2008JPO3810.1; Cartwright, D. E. ( 1999 ). Tides: A scientific history (pp. 210 ). New York: Cambridge University Press Cambridge.; Chassignet, E. P., Hurlburt, H. E., Metzger, E. J., Smedstad, O. M., Cummings, J. A., Halliwell, G. R., Bleck, R., Baraille, R., Wallcraft, A. J., Lozano, C., Tolman, H. L., Srinivasan, A., Hankin, S., Cornillon, P., Weisberg, R., Barth, A., He, R., Werner, F., & Wilkin, J. ( 2009 ). US GODAE: Global ocean prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography, 22 ( 2 ), 64 – 75. https://doi.org/10.5670/oceanog.2009.39; Chassignet, E. P., & Xu, X. ( 2017 ). Impact of horizontal resolution (1/12 to 1/50) on gulf stream separation, penetration, and variability. Journal of Physical Oceanography, 47 ( 8 ), 1999 – 2021. https://doi.org/10.1175/JPO-D-17-0031.1; Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge‐Sanz, B. M., Morcrette, J.‐J., Park, B.‐K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.‐N., & Vitart, F. ( 2011 ). The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137 ( 656 ), 553 – 597. https://doi.org/10.1002/qj.828; Doherty, K. W., Frye, D. E., Liberatore, S. P., & Toole, J. M. ( 1999 ). A moored profiling instrument. Journal of Atmospheric and Oceanic Technology, 16, 1816 – 1829.; Ducet, N. P., Traon, Y. L., & Reverdin, G. ( 2000 ). Global high‐resolution mapping of ocean circulation from TOPEX/Poseidon and ERS‐1 and ‐2. Journal of Geophysical Research, 105 ( C8 ), 19,477 – 19,498. https://doi.org/10.1029/2000JC900063; Egbert, G. D., Bennett, A. F., & Foreman, M. G. G. ( 1994 ). TOPEX/POSEIDON tides estimated using a global inverse model. Journal of Geophysical Research, 99 ( C12 ), 24,821 – 24,852. https://doi.org/10.1029/94JC01894; Egbert, G. D., & Erofeeva, S. Y. ( 2002 ). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19 ( 2 ), 183 – 204. https://doi.org/10.1175/1520-0426(2002)0192.0.CO;2; Garrett, C., & Kunze, E. ( 2007 ). Internal tide generation in the deep ocean. Annual Review of Fluid Mechanics, 39 ( 1 ), 57 – 87. https://doi.org/10.1146/annurev.fluid.39.050905.110227; Hecht, W. M., & Hasumi, H. ( 2008 ). Ocean modeling in an eddying regime, Geophysical monograph (Vol. 177 ). 2000 Florida Avenue N. W Washington, DC: American Geophysical Union.; Hendershott, M. C. ( 1972 ). The effects of solid earth deformation on global ocean tides. Geophysical Journal of the Royal Astronomical Society, 29 ( 4 ), 389 – 402. https://doi.org/10.1111/j.1365-246X.1972.tb06167.x; Hogan, T. F., Liu, M., Ridout, J. A., Peng, M. S., Whitcomb, T. R., Ruston, B. C., Reynolds, C. A., Eckermann, S. D., Moskaitis, J. R., Baker, N. L., McCormack, P., Viner, J. L. C., McLay, J. G., Flatau, M. K., Xu, L., Chen, C., & Chang, S. W. ( 2014 ). The Navy Global Environmental Model. Oceanography, 27 ( 3 ), 116 – 125.; Jakobsson, M., Macnab, R., Mayer, L., Anderson, R., Edwards, M., Hatzky, J., Schenke, H. W., & Johnson, P. ( 2008 ). An improved bathymetric portrayal of the Arctic Ocean: Implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophysical Research Letters, 35, L07602. https://doi.org/10.1029/2008GL033520; Jayne, S. R., & Laurent, L. C. S. t. ( 2001 ). Parameterizing tidal dissipation over rough topography. Geophysical Research Letters, 28 ( 5 ), 811 – 814. https://doi.org/10.1029/2000GL012044; Kokoska, S., & Zwillinger, D. ( 2000 ). Standard probability and statistics tables and formulae. Boca Raton: Chapman & Hall‐CRC.; Kunze, E. ( 2017 ). The internal‐wave‐driven meridional overturning circulation. Journal of Physical Oceanography, 47 ( 11 ), 2673 – 2689. https://doi.org/10.1175/JPO-D-16-0142.1

  18. 18
  19. 19

    المؤلفون: Mangeon, Gaëtan

    المساهمون: Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Computational AGility for internal flows sImulations and compaRisons with Experiments (CAGIRE), Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Pau et des Pays de l'Adour (UPPA), Mécanique des Fluides, Energies et Environnement (EDF R&D MFEE), EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Université de Pau et des Pays de l'Adour, Rémi Manceau, Jean-François Wald [Co-encadrant], ANR-17-CE06-0005,MONACO_2025,Modélisation de la convection naturelle : un défi pour l'ambition Tout Numérique 2025(2017)

    المصدر: Mécanique des fluides [physics.class-ph]. Université de Pau et des Pays de l'Adour, 2020. Français. ⟨NNT : ⟩
    Mécanique des fluides [physics.class-ph]. Université de Pau et des Pays de l'Adour, 2020. Français. ⟨NNT : 2020PAUU3018⟩
    Mécanique des fluides [physics.class-ph]. Université de Pau et des Pays de l'Adour, 2020. Français

  20. 20
    Dissertation/ Thesis

    المؤلفون: Mangeon, Gaëtan

    المساهمون: Laboratoire de Mathématiques et de leurs Applications Pau (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Computational AGility for internal flows sImulations and compaRisons with Experiments (CAGIRE), Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Pau et des Pays de l'Adour (UPPA), Mécanique des Fluides, Energies et Environnement (EDF R&D MFEE), EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Université de Pau et des Pays de l'Adour, Rémi Manceau, Jean-François Wald Co-encadrant, ANR-17-CE06-0005,MONACO_2025,Modélisation de la convection naturelle : un défi pour l'ambition Tout Numérique 2025(2017)

    المصدر: https://theses.hal.science/tel-02923253 ; Mécanique des fluides [physics.class-ph]. Université de Pau et des Pays de l'Adour, 2020. Français. ⟨NNT : ⟩.