-
1Dissertation/ Thesis
المؤلفون: Yang, Gaoqiang
المساهمون: Apsley, David, Iacovides, Hector, Craft, Timothy
مصطلحات موضوعية: 621.402, Temperature Variance, Conjugate Heat Transfer, Turbulent Model, RANS Model, Temperature fluctuation
-
2Academic Journal
المؤلفون: Nimmy, P., Nagaraja, K. V., Srilatha, P., Karthik, K., Sowmya, G., Kumar, R. S. V., Khan, U., Hussain, S. M., Hendy, A. S., Ali, M. R.
المصدر: Case Studies in Thermal Engineering
مصطلحات موضوعية: ARTIFICIAL NEURAL NETWORK, DOVETAIL FIN, FIN, PARTIALLY WET FIN, FINS (HEAT EXCHANGE), HEAT CONVECTION, HEAT RADIATION, ORDINARY DIFFERENTIAL EQUATIONS, RUNGE KUTTA METHODS, THERMAL CONDUCTIVITY, WETTING, EXTENDED SURFACES, LEVENBERG-MARQUARDT, NEURAL-NETWORKS, TEMPERATURE VARIANCE, THERMAL BEHAVIOURS, THERMAL MODEL, WET FINS, NEURAL NETWORKS
وصف الملف: application/pdf
Relation: Nimmy, PM, Nagaraja, KV, Srilatha, P, Karthik, K, Sowmya, G, Kumar, RSV, Khan, U, Hussain, SM, Hendy, A & Ali, M 2023, 'Implication of radiation on the thermal behavior of a partially wetted dovetail fin using an artificial neural network', Case Studies in Thermal Engineering, Том. 51, 103552. https://doi.org/10.1016/j.csite.2023.103552; Nimmy, P. M., Nagaraja, K. V., Srilatha, P., Karthik, K., Sowmya, G., Kumar, R. S. V., Khan, U., Hussain, S. M., Hendy, A., & Ali, M. (2023). Implication of radiation on the thermal behavior of a partially wetted dovetail fin using an artificial neural network. Case Studies in Thermal Engineering, 51, [103552]. https://doi.org/10.1016/j.csite.2023.103552; Final; All Open Access, Gold; https://www.scopus.com/inward/record.uri?eid=2-s2.0-85173209342&doi=10.1016%2fj.csite.2023.103552&partnerID=40&md5=eec3dab262857ed1f8d5e84484d73e58; https://doi.org/10.1016/j.csite.2023.103552; http://elar.urfu.ru/handle/10995/130838; 85173209342; 001088623800001
-
3Academic Journal
المؤلفون: Yusufjon Tillayev, Azimjon Azimov, Shuhrat Ehgamberdiev, Sabit Ilyasov
المصدر: Atmosphere; Volume 14; Issue 2; Pages: 199
مصطلحات موضوعية: optical turbulence, astronomical seeing, differential image motion monitor, wind speed, wind direction, temperature, temperature variance
جغرافية الموضوع: agris
وصف الملف: application/pdf
Relation: Atmospheric Techniques, Instruments, and Modeling; https://dx.doi.org/10.3390/atmos14020199
-
4Academic Journal
المصدر: Mechanika., Kaunas : KTU, 2023, vol. 29, no. 3, p. 188-193. ; ISSN 1392-1207 ; eISSN 2029-6983
مصطلحات موضوعية: support flange, finite element, weld, structural behaviour, temperature variance
وصف الملف: application/pdf
-
5Academic Journal
المؤلفون: Xiaozhou He, Eberhard Bodenschatz, Guenter Ahlers
المصدر: Theoretical and Applied Mechanics Letters, Vol 11, Iss 2, Pp 100237- (2021)
مصطلحات موضوعية: Rayleigh-Bénard convection, Temperature variance profile, Attached-eddy, Law of wall, Engineering (General). Civil engineering (General), TA1-2040
وصف الملف: electronic resource
-
6Academic Journal
المؤلفون: Manenti, Tommaso, Kjærsgaard, Anders, Schou, Toke Munk, Pertoldi, Cino, Moghadam, Neda N., Loeschcke, Volker
المصدر: Manenti , T , Kjærsgaard , A , Schou , T M , Pertoldi , C , Moghadam , N N & Loeschcke , V 2021 , ' Responses to developmental temperature fluctuation in life history traits of five drosophila species (Diptera : Drosophilidae) from different thermal niches ' , Insects , vol. 12 , no. 10 , 925 . https://doi.org/10.3390/insects12100925
مصطلحات موضوعية: Acclimation, Climate change, Developmental time, Fluctuating temperature, Jensen’s inequality, Temperature variance, Thermal physiology, Viability, Wing aspect ratio, Wing size
Relation: https://pure.au.dk/portal/da/publications/responses-to-developmental-temperature-fluctuation-in-life-history-traits-of-five-drosophila-species-diptera(aed74fc0-6d39-46c8-93c3-d6971efe5791).html
الاتاحة: https://pure.au.dk/portal/da/publications/responses-to-developmental-temperature-fluctuation-in-life-history-traits-of-five-drosophila-species-diptera(aed74fc0-6d39-46c8-93c3-d6971efe5791).html
https://doi.org/10.3390/insects12100925
http://www.scopus.com/inward/record.url?scp=85117574093&partnerID=8YFLogxK -
7Academic Journal
المؤلفون: Manenti, Tommaso, Kjærsgaard, Anders, Munk Schou, Toke, Pertoldi, Cino, Moghadam, Neda N., Loeschcke, Volker
مصطلحات موضوعية: thermal physiology, fluctuating temperature, Jensen’s inequality, temperature variance, acclimation, wing size, climate change, developmental time, viability, wing aspect ratio, ilmastonmuutokset, ympäristönmuutokset, elinkierto, lämmönsieto, sopeutuminen, lämpötila, mahlakärpäset, siivet
وصف الملف: application/pdf; fulltext
Relation: Insects; 10; 12; Manenti, T., Kjærsgaard, A., Munk Schou, T., Pertoldi, C., Moghadam, N. N., & Loeschcke, V. (2021). Responses to Developmental Temperature Fluctuation in Life History Traits of Five Drosophila Species (Diptera: Drosophilidae) from Different Thermal Niches. Insects , 12 (10), Article 925. https://doi.org/10.3390/insects12100925; CONVID_101945204
-
8Academic Journal
المساهمون: Mécanique des Fluides, Energies et Environnement (EDF R&D MFEE), EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Computational AGility for internal flows sImulations and compaRisons with Experiments (CAGIRE), Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Pau et des Pays de l'Adour (UPPA), Laboratoire de Mathématiques et de leurs Applications Pau (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), ANRT (CIFRE 2017/0079), ANR-17-CE06-0005,MONACO_2025,Modélisation de la convection naturelle : un défi pour l'ambition Tout Numérique 2025(2017)
المصدر: ISSN: 0022-1120.
مصطلحات موضوعية: Turbulence modeling, Turbulent heat flux, Near-wall modeling, Second- moment closure, Differential Flux Model, Elliptic blending, Temperature variance, Variance dissipation rate, [SPI]Engineering Sciences [physics], [SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph]
Relation: hal-02974557; https://inria.hal.science/hal-02974557; https://inria.hal.science/hal-02974557/document; https://inria.hal.science/hal-02974557/file/Mangeon_etal_JFM_2020.pdf
-
9Conference
المساهمون: Jozef Stefan Institute Ljubljana (IJS), Mécanique des Fluides, Energies et Environnement EDF R & D = Fluid Mechanics, Energy and Environment EDF R & D (EDF R&D MFEE), EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF)
المصدر: 17th International Meeting on Nuclear Reactor Thermal Hydraulics (NURETH17)
https://hal.science/hal-01631515
17th International Meeting on Nuclear Reactor Thermal Hydraulics (NURETH17), Sep 2017, Xi'An, Chinaمصطلحات موضوعية: Conjugate heat transfer, wall-resolved LES, Temperature variance dissipation rate, [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
-
10Academic Journal
المؤلفون: Pugmire, Jonathan Rich
المصدر: All Graduate Theses and Dissertations
مصطلحات موضوعية: atmospheric gravity waves, mesosphere, mountain waves, aeronomy, temperature variance, Physics
وصف الملف: application/pdf
Relation: https://digitalcommons.usu.edu/etd/7387; https://digitalcommons.usu.edu/context/etd/article/8504/viewcontent/2018_Pugmire_Jonathan.pdf
-
11Academic Journal
المؤلفون: Takahiro MIURA, Koji MATSUBARA, Atsushi SAKURAI
المصدر: Journal of Thermal Science and Technology, Vol 7, Iss 1, Pp 120-134 (2012)
مصطلحات موضوعية: turbulent flow, heat transfer enhancement, direct numerical simulation, rectangular rib, turbulent heat flux budget, temperature variance budget, Mechanical engineering and machinery, TJ1-1570, Mechanics of engineering. Applied mechanics, TA349-359
وصف الملف: electronic resource
-
12Academic Journal
مصطلحات موضوعية: Depth, Internal waves, Mo’orea, Niche partitioning, Temperature variance
Relation: https://repository.hkust.edu.hk/ir/Record/1783.1-111324; Coral Reefs, v. 41, (3), June 2022, p. 767-778; https://doi.org/10.1007/s00338-021-02107-9; http://lbdiscover.ust.hk/uresolver?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rfr_id=info:sid/HKUST:SPI&rft.genre=article&rft.issn=0722-4028&rft.volume=&rft.issue=&rft.date=2021&rft.spage=&rft.aulast=Johnston&rft.aufirst=&rft.atitle=Niche+differences+in+co-occurring+cryptic+coral+species+%28Pocillopora+spp.%29&rft.title=Coral+Reefs; http://www.scopus.com/record/display.url?eid=2-s2.0-85105939835&origin=inward; http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=LinksAMR&SrcApp=PARTNER_APP&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000650131600002
الاتاحة: https://repository.hkust.edu.hk/ir/Record/1783.1-111324
https://doi.org/10.1007/s00338-021-02107-9
http://lbdiscover.ust.hk/uresolver?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rfr_id=info:sid/HKUST:SPI&rft.genre=article&rft.issn=0722-4028&rft.volume=&rft.issue=&rft.date=2021&rft.spage=&rft.aulast=Johnston&rft.aufirst=&rft.atitle=Niche+differences+in+co-occurring+cryptic+coral+species+%28Pocillopora+spp.%29&rft.title=Coral+Reefs
http://www.scopus.com/record/display.url?eid=2-s2.0-85105939835&origin=inward
http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=LinksAMR&SrcApp=PARTNER_APP&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000650131600002 -
13
المؤلفون: Ern, Manfred, Forbes, Jeffrey M., Zhang, Xiaoli
مصطلحات موضوعية: gravity waves, temperature variance, SABER, monsoon system, middle atmosphere
Relation: https://doi.org/10.5281/zenodo.6346342; https://doi.org/10.5281/zenodo.6346343; oai:zenodo.org:6346343
-
14Academic Journal
المؤلفون: Shuichi Torii, Wen-Jei Yang
المصدر: International Journal of Rotating Machinery, Vol 4, Iss 4, Pp 271-282 (1998)
مصطلحات موضوعية: Thermal transport phenomena, Parallel rotation, Turbulent kinetic energy, Temperature variance, Turbulent heat flux., Engineering (General). Civil engineering (General), TA1-2040
وصف الملف: electronic resource
Relation: https://doaj.org/toc/1023-621X
-
15
المؤلفون: Guenter Ahlers, Xiaozhou He, Eberhard Bodenschatz
المصدر: Theoretical and Applied Mechanics Letters, Vol 11, Iss 2, Pp 100237-(2021)
مصطلحات موضوعية: Convection, Environmental Engineering, Prandtl number, Temperature variance profile, Biomedical Engineering, Computational Mechanics, Aerospace Engineering, Ocean Engineering, Physics::Fluid Dynamics, symbols.namesake, Scaling, Civil and Structural Engineering, Rayleigh–Bénard convection, Physics, Turbulence, Mechanical Engineering, Rayleigh-Bénard convection, Mathematical analysis, Rayleigh number, Law of wall, Engineering (General). Civil engineering (General), Boundary layer, Mechanics of Materials, symbols, TA1-2040, Shear flow, Attached-eddy
-
16
المساهمون: Mécanique des Fluides, Energies et Environnement (EDF R&D MFEE), EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Computational AGility for internal flows sImulations and compaRisons with Experiments (CAGIRE), Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Pau et des Pays de l'Adour (UPPA), Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), ANRT (CIFRE 2017/0079), ANR-17-CE06-0005,MONACO_2025,Modélisation de la convection naturelle : un défi pour l'ambition Tout Numérique 2025(2017)
المصدر: Journal of Fluid Mechanics
Journal of Fluid Mechanics, 2020, 905 (A1), pp.1-34. ⟨10.1017/jfm.2020.683⟩
Journal of Fluid Mechanics, Cambridge University Press (CUP), 2020, 905 (A1), pp.1-34. ⟨10.1017/jfm.2020.683⟩مصطلحات موضوعية: 020209 energy, Direct numerical simulation, Flux, 02 engineering and technology, 01 natural sciences, Differential Flux Model, Elliptic blending, 010305 fluids & plasmas, [SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph], Physics::Fluid Dynamics, [SPI]Engineering Sciences [physics], 0103 physical sciences, 0202 electrical engineering, electronic engineering, information engineering, Fluid dynamics, Boundary value problem, Temperature variance, Second- moment closure, Turbulence modeling, Physics, Mechanical Engineering, Applied Mathematics, Mechanics, Dissipation, Condensed Matter Physics, Forced convection, Turbulent heat flux, Heat flux, Near-wall modeling, Mechanics of Materials, Heat transfer, Variance dissipation rate
-
17Academic Journal
المؤلفون: Luecke, Conrad A., Arbic, Brian K., Richman, James G., Shriver, Jay F., Alford, Matthew H., Ansong, Joseph K., Bassette, Steven L., Buijsman, Maarten C., Menemenlis, Dimitris, Scott, Robert B., Timko, Patrick G., Voet, Gunnar, Wallcraft, Alan J., Zamudio, Luis
مصطلحات موضوعية: embedded tides, temperature variance, kinetic energy, model‐data comparison, model resolution, internal gravity waves, Geological Sciences, Atmospheric and Oceanic Sciences, Science
وصف الملف: application/pdf
Relation: Luecke, Conrad A.; Arbic, Brian K.; Richman, James G.; Shriver, Jay F.; Alford, Matthew H.; Ansong, Joseph K.; Bassette, Steven L.; Buijsman, Maarten C.; Menemenlis, Dimitris; Scott, Robert B.; Timko, Patrick G.; Voet, Gunnar; Wallcraft, Alan J.; Zamudio, Luis (2020). "Statistical Comparisons of Temperature Variance and Kinetic Energy in Global Ocean Models and Observations: Results From Mesoscale to Internal Wave Frequencies." Journal of Geophysical Research: Oceans 125(5): n/a-n/a.; https://hdl.handle.net/2027.42/155531; Journal of Geophysical Research: Oceans; Rocha, C. B., Gille, S. T., Chereskin, T. K., & Menemenlis, D. ( 2016 ). Seasonality of submesoscale dynamics in the Kuroshio Extension. Geophysical Research Letters, 43, 11,304 – 11,311. https://doi.org/10.1002/2016GL071349; Large, W. G., McWilliams, J. C., & Doney, S. C. ( 1994 ). Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32 ( 4 ), 363 – 403. https://doi.org/10.1029/94RG01872; Large, W., & Yeager, S. ( 2004 ). Diurnal to decadal global forcing for ocean and sea‐ice models: The data sets and flux climatologies (NCAR technical notes). National Center for Atmospheric Research.; Losch, M., Menemenlis, D., Campin, J.‐M., Heimbach, P., & Hill, C. ( 2010 ). On the formulation of sea‐ice models. Part 1: Effects of different solver implementations and parameterizations. Ocean Modelling, 33 ( 1 ), 129 – 144. https://doi.org/10.1016/j.ocemod.2009.12.008; Luecke, C. A., Arbic, B. K., Bassette, S. L., Richman, J. G., Shriver, J. F., Alford, M. H., Smedstad, O. M., Timko, P. G., Trossman, D. S., & Wallcraft, A. J. ( 2017 ). The global mesoscale eddy available potential energy field in models and observations. Journal of Geophysical Research: Oceans, 122, 9126 – 9143. https://doi.org/10.1002/2017JC013136; Smith, W. H. F., & Sandwell, D. T. ( 1997 ). Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277 ( 5334 ), 1956 – 1962. https://doi.org/10.1126/science.277.5334.1956; MacKinnon, J. A., Zhao, Z., Whalen, C. B., Waterhouse, A. F., Trossman, D. S., Sun, O. M., Laurent, L. C. S. t., Simmons, H. L., Polzin, K., Pinkel, R., Pickering, A., Norton, N. J., Nash, J. D., Musgrave, R., Merchant, L. M., Melet, A. V., Mater, B., Legg, S., Large, W. G., Kunze, E., Klymak, J. M., Jochum, M., Jayne, S. R., Hallberg, R. W., Griffies, S. M., Diggs, S., Danabasoglu, G., Chassignet, E. P., Buijsman, M. C., Bryan, F. O., Briegleb, B. P., Barna, A., Arbic, B. K., Ansong, J. K., & Alford, M. H. ( 2017 ). Climate process team on internal wave‐driven ocean mixing. Bulletin of the American Meteorological Society, 98 ( 11 ), 2429 – 2454. https://doi.org/10.1175/BAMS-D-16-0030.1; Maltrud, M. E., & McClean, J. L. ( 2005 ). An eddy resolving global 1/10 ocean simulation. Ocean Modelling, 8 ( 1‐2 ), 31 – 54. https://doi.org/10.1016/j.ocemod.2003.12.001; Marshall, J., Adcroft, A., Hill, C., Perelman, L., & Heisey, C. ( 1997 ). A finite‐volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research, 102 ( C3 ), 5753 – 5766. https://doi.org/10.1029/96JC02775; Melet, A., Legg, S., & Hallberg, R. ( 2016 ). Climatic impacts of parameterized local and remote tidal mixing. Journal of Climate, 29 ( 10 ), 3473 – 3500. https://doi.org/10.1175/JCLI-D-15-0153.1; Menemenlis, D., Campin, J.‐M., Heimbach, P., Hill, C., Lee, T., Nguyen, A., Schodlok, M., & Zhang, H. ( 2008 ). ECCO2: High resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter, 31, 13 – 21.; Müller, M., Arbic, B. K., Richman, J. G., Shriver, J. F., Kunze, E. L., Scott, R. B., Wallcraft, A. J., & Zamudio, L. ( 2015 ). Toward an internal gravity wave spectrum in global ocean models. Geophysical Research Letters, 42, 3474 – 3481. https://doi.org/10.1002/2015GL063365; Munk, W., & Wunsch, C. ( 1998 ). Abyssal recipes II: Energetics of tidal and wind mixing. Deep‐Sea Research I, 45, 1977 – 2010.; Ngodock, H. E., Souopgui, I., Wallcraft, A. J., Richman, J. G., Shriver, J. F., & Arbic, B. K. ( 2016 ). On improving the accuracy of the M 2 barotropic tides embedded in a high‐resolution global ocean circulation model. Ocean Modelling, 97, 16 – 26. https://doi.org/10.1016/j.ocemod.2015.10.011; Penduff, T., Barnier, B., Molines, J.‐M., & Madec, G. ( 2006 ). On the use of current meter data to assess the realism of ocean model simulations. Ocean Modelling, 11, 399 – 416.; Ponte, R. M., Chaudhuri, A. H., & Vinogradov, S. V. ( 2015 ). Long‐period tides in an atmospherically driven, stratified ocean. Journal of Physical Oceanography, 45 ( 7 ), 1917 – 1928. https://doi.org/10.1175/JPO-D-15-0006.1; Qiu, B., Chen, S., Klein, P., Wang, J., Torres, H., Fu, L.‐L., & Menemenlis, D. ( 2018 ). Seasonality in transition scale from balanced to unbalanced motions in the world ocean. Journal of Physical Oceanography, 48 ( 3 ), 591 – 605. https://doi.org/10.1175/JPO-D-17-0169.1; Ray, R. D. ( 1999 ). A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2 (pp. 1 ). distributor Greenbelt M Springfield Va: National Aeronautics and Space Administration, Goddard Space Flight Center; National Technical Information Service,.; Rocha, C. B., Chereskin, T. K., Gille, S. T., & Menemenlis, D. ( 2016 ). Mesoscale to submesoscale wavenumber spectra in Drake Passage. Journal of Physical Oceanography, 46 ( 2 ), 601 – 620. https://doi.org/10.1175/JPO-D-15-0087.1; Savage, A. C., Arbic, B. K., Alford, M. H., Ansong, J. K., Farrar, J. T., Menemenlis, D., O’Rourke, A. K., Richman, J. G., Shriver, J. F., Voet, G., Wallcraft, A. J., & Zamudio, L. ( 2017 ). Spectral decomposition of internal gravity wave sea surface height in global models. Journal of Geophysical Research: Oceans, 122, 7803 – 7821. https://doi.org/10.1002/2017JC013009; Savage, A. C., Arbic, B. K., Richman, J. G., Shriver, J. F., Alford, M. H., Buijsman, M. C., Thomas Farrar, J., Sharma, H., Voet, G., Wallcraft, A. J., & Zamudio, L. ( 2017 ). Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies. Journal of Geophysical Research: Oceans, 122, 2519 – 2538. https://doi.org/10.1002/2016JC012331; Scott, R. B., Arbic, B. K., Chassignet, E. P., Coward, A. C., Maltrud, M., Merryfield, W. J., Srinivasan, A., & Varghese, A. ( 2010 ). Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records. Ocean Modelling, 32, 157 – 169.; Shriver, J. F., Arbic, B. K., Richman, J. G., Ray, R. D., Metzger, E. J., Wallcraft, A. J., & Timko, P. G. ( 2012 ). An evaluation of the barotropic and internal tides in a high‐resolution global ocean circulation model. Journal of Geophysical Research, 117, C10024. https://doi.org/10.1029/2012JC008170; Silverthorne, K. E., & Toole, J. M. ( 2009 ). Seasonal kinetic energy variability of near‐inertial motions. Journal of Physical Oceanography, 39 ( 4 ), 1035 – 1049. https://doi.org/10.1175/2008JPO3920.1; Simmons, H. L., & Alford, M. H. ( 2012 ). Simulating the long‐range swell of internal waves generated by ocean storms. Oceanography, 25, 30 – 41.; Skiba, A. W., Zeng, L., Arbic, B. K., Müller, M., & Godwin, W. J. ( 2013 ). On the resonance and shelf/open‐ocean coupling of the global diurnal tides. Journal of Physical Oceanography, 43 ( 7 ), 1301 – 1324. https://doi.org/10.1175/JPO-D-12-054.1; Stammer, D., Ray, R. D., Andersen, O. B., Arbic, B. K., Bosch, W., Carrére, L., Cheng, Y., Chinn, D. S., Dushaw, B. D., Egbert, G. D., Erofeeva, S. Y., Fok, H. S., Green, J. A. M., Griffiths, S., King, M. A., Lapin, V., Lemoine, F. G., Luthcke, S. B., Lyard, F., Morison, J., Müller, M., Padman, L., Richman, J. G., Shriver, J. F., Shum, C. K., Taguchi, E., & Yi, Y. ( 2014 ). Accuracy assessment of global barotropic ocean tide models. Reviews of Geophysics, 52, 243 – 282. https://doi.org/10.1002/2014RG000450; Su, Z., Wang, J., Klein, P., Thompson, A. F., & Menemenlis, D. ( 2018 ). Ocean submesoscales as a key component of the global heat budget. Nature Communications, 9 ( 1 ), 775. https://doi.org/10.1038/s41467-018-02983-w; Thoppil, P. G., Richman, J. G., & Hogan, P. J. ( 2011 ). Energetics of a global ocean circulation model compared to observations. Geophysical Research Letters, 38, L15607. https://doi.org/10.1029/2011GL048347; Timko, P. G., Arbic, B. K., Richman, J. G., Scott, R. B., Metzger, E. J., & Wallcraft, A. J. ( 2012 ). Skill tests of three‐dimensional tidal currents in a global ocean model: A look at the North Atlantic. Journal of Geophysical Research, 117, C08014. https://doi.org/10.1029/2011JC007617; Timko, P. G., Arbic, B. K., Richman, J. G., Scott, R. B., Metzger, E. J., & Wallcraft, A. J. ( 2013 ). Skill testing a three‐dimensional global tide model to historical current meter records. Journal of Geophysical Research: Oceans, 118, 6914 – 6933. https://doi.org/10.1002/2013JC009071; Torres, H. S., Klein, P., Menemenlis, D., Qiu, B., Su, Z., Wang, J., Chen, S., & Fu, L.‐L. ( 2018 ). Partitioning ocean motions into balanced motions and internal gravity waves: A modeling study in anticipation of future space missions. Journal of Geophysical Research: Oceans, 123, 8084 – 8105. https://doi.org/10.1029/2018JC014438; Wang, J., Fu, L.‐L., Qiu, B., Menemenlis, D., Farrar, J. T., Chao, Y., Thompson, A. F., & Flexas, M. M. ( 2018 ). An observing system simulation experiment for the calibration and validation of the surface water ocean topography sea surface height measurement using in situ platforms. Journal of Atmospheric and Oceanic Technology, 35 ( 2 ), 281 – 297. https://doi.org/10.1175/JTECH-D-17-0076.1; Wang, J., Fu, L.‐L., Torres, H. S., Chen, S., Qiu, B., & Menemenlis, D. ( 2019 ). On the spatial scales to be resolved by the surface water and ocean topography Ka‐band radar interferometer. Journal of Atmospheric and Oceanic Technology, 36 ( 1 ), 87 – 99. https://doi.org/10.1175/JTECH-D-18-0119.1; Weis, P., Thomas, M., & Sündermann, J. ( 2008 ). Broad frequency tidal dynamics simulated by a high‐resolution global ocean tide model forced by ephemerides. Journal of Geophysical Research, 113, C10029. https://doi.org/10.1029/2007JC004556; Wright, C. J., Scott, R. B., Ailliot, P., & Furnival, D. ( 2014 ). Lee wave generation rates in the deep ocean. Geophysical Research Letters, 41, 2434 – 2440. https://doi.org/10.1002/2013GL059087; Yu, X., Ponte, A. L., Elipot, S., Menemenlis, D., Zaron, E. D., & Abernathey, R. ( 2019 ). Surface kinetic energy distributions in the global oceans from a high‐resolution numerical model and surface drifter observations. Geophysical Research Letters, 46, 9757 – 9766. https://doi.org/10.1029/2019GL083074; Ansong, J. K., Arbic, B. K., Alford, M. H., Buijsman, M. C., Shriver, J. F., Zhao, Z., Richman, J. G., Simmons, H. L., Timko, P. G., Wallcraft, A. J., & Zamudio, L. ( 2017 ). Semidiurnal internal tide energy fluxes and their variability in a global ocean model and moored observations. Journal of Geophysical Research: Oceans, 122, 1882 – 1900. https://doi.org/10.1002/2016JC012184; Ansong, J. K., Arbic, B. K., Buijsman, M. C., Richman, J. G., Shriver, J. F., & Wallcraft, A. J. ( 2015 ). Indirect evidence for substantial damping of low‐mode internal tides in the open ocean. Journal of Geophysical Research: Oceans, 120, 6057 – 6071. https://doi.org/10.1002/2015JC010998; Arbic, B. K., Alford, M. H., Ansong, J. K., Buijsman, M. C., Ciotti, R. B., Farrar, J. T., Hallberg, R. W., Henze, C. E., Hill, C. N., Luecke, C. A., Menemenlis, D., Metzger, E. J., Müller, M., Nelson, A. D., Nelson, B. C., Ngodock, H. E., Ponte, R. M., Richman, J. G., Savage, A. C., Scott, R. B., Shriver, J. F., Simmons, H. L., Souopgui, I., Timko, P. G., Wallcraft, A. J., Zamudio, L., & Zhao, Z. ( 2018 ). A Primer on Global Internal Tide and Internal Gravity Wave Continuum Modeling in HYCOM and MITgcm. New Frontiers In Operational Oceanography. Retrieved from http://purl.flvc.org/fsu/fd/FSU_libsubv1_scholarship_submission_1536242074_55feafcc; Arbic, B. K., Richman, J. G., Shriver, J. F., Timko, P. G., Metzger, E. J., & Wallcraft, A. J. ( 2012 ). Global modeling of internal tides within an eddying ocean general circulation model. Oceanography, 25, 20 – 29. https://doi.org/10.5670/oceanog.2012.38; Arbic, B. K., Wallcraft, A. J., & Metzger, E. J. ( 2010 ). Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modelling, 32, 175 – 187. https://doi.org/10.1016/j.ocemod.2010.01.007; Buijsman, M. C., Ansong, J. K., Arbic, B. K., Richman, J. G., Shriver, J. F., Timko, P. G., Wallcraft, A. J., Whalen, C. B., & Zhao, Z. ( 2016 ). Impact of parameterized internal wave drag on the semidiurnal energy balance in a global ocean circulation model. Journal of Physical Oceanography, 46 ( 5 ), 1399 – 1419. https://doi.org/10.1175/JPO-D-15-0074.1; Buijsman, M., Arbic, B., Green, J., Helber, R., Richman, J., Shriver, J., Timko, P., & Wallcraft, A. ( 2015 ). Optimizing internal wave drag in a forward barotropic model with semidiurnal tides. Ocean Modelling, 85, 42 – 55. https://doi.org/10.1016/j.ocemod.2014.11.003; Capet, X., McWilliams, J. C., Molemaker, M. J., & Shchepetkin, A. F. ( 2008 ). Mesoscale to submesoscale transition in the California current system. Part III: Energy balance and flux. Journal of Physical Oceanography, 38 ( 10 ), 2256 – 2269. https://doi.org/10.1175/2008JPO3810.1; Cartwright, D. E. ( 1999 ). Tides: A scientific history (pp. 210 ). New York: Cambridge University Press Cambridge.; Chassignet, E. P., Hurlburt, H. E., Metzger, E. J., Smedstad, O. M., Cummings, J. A., Halliwell, G. R., Bleck, R., Baraille, R., Wallcraft, A. J., Lozano, C., Tolman, H. L., Srinivasan, A., Hankin, S., Cornillon, P., Weisberg, R., Barth, A., He, R., Werner, F., & Wilkin, J. ( 2009 ). US GODAE: Global ocean prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography, 22 ( 2 ), 64 – 75. https://doi.org/10.5670/oceanog.2009.39; Chassignet, E. P., & Xu, X. ( 2017 ). Impact of horizontal resolution (1/12 to 1/50) on gulf stream separation, penetration, and variability. Journal of Physical Oceanography, 47 ( 8 ), 1999 – 2021. https://doi.org/10.1175/JPO-D-17-0031.1; Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge‐Sanz, B. M., Morcrette, J.‐J., Park, B.‐K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.‐N., & Vitart, F. ( 2011 ). The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137 ( 656 ), 553 – 597. https://doi.org/10.1002/qj.828; Doherty, K. W., Frye, D. E., Liberatore, S. P., & Toole, J. M. ( 1999 ). A moored profiling instrument. Journal of Atmospheric and Oceanic Technology, 16, 1816 – 1829.; Ducet, N. P., Traon, Y. L., & Reverdin, G. ( 2000 ). Global high‐resolution mapping of ocean circulation from TOPEX/Poseidon and ERS‐1 and ‐2. Journal of Geophysical Research, 105 ( C8 ), 19,477 – 19,498. https://doi.org/10.1029/2000JC900063; Egbert, G. D., Bennett, A. F., & Foreman, M. G. G. ( 1994 ). TOPEX/POSEIDON tides estimated using a global inverse model. Journal of Geophysical Research, 99 ( C12 ), 24,821 – 24,852. https://doi.org/10.1029/94JC01894; Egbert, G. D., & Erofeeva, S. Y. ( 2002 ). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19 ( 2 ), 183 – 204. https://doi.org/10.1175/1520-0426(2002)0192.0.CO;2; Garrett, C., & Kunze, E. ( 2007 ). Internal tide generation in the deep ocean. Annual Review of Fluid Mechanics, 39 ( 1 ), 57 – 87. https://doi.org/10.1146/annurev.fluid.39.050905.110227; Hecht, W. M., & Hasumi, H. ( 2008 ). Ocean modeling in an eddying regime, Geophysical monograph (Vol. 177 ). 2000 Florida Avenue N. W Washington, DC: American Geophysical Union.; Hendershott, M. C. ( 1972 ). The effects of solid earth deformation on global ocean tides. Geophysical Journal of the Royal Astronomical Society, 29 ( 4 ), 389 – 402. https://doi.org/10.1111/j.1365-246X.1972.tb06167.x; Hogan, T. F., Liu, M., Ridout, J. A., Peng, M. S., Whitcomb, T. R., Ruston, B. C., Reynolds, C. A., Eckermann, S. D., Moskaitis, J. R., Baker, N. L., McCormack, P., Viner, J. L. C., McLay, J. G., Flatau, M. K., Xu, L., Chen, C., & Chang, S. W. ( 2014 ). The Navy Global Environmental Model. Oceanography, 27 ( 3 ), 116 – 125.; Jakobsson, M., Macnab, R., Mayer, L., Anderson, R., Edwards, M., Hatzky, J., Schenke, H. W., & Johnson, P. ( 2008 ). An improved bathymetric portrayal of the Arctic Ocean: Implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophysical Research Letters, 35, L07602. https://doi.org/10.1029/2008GL033520; Jayne, S. R., & Laurent, L. C. S. t. ( 2001 ). Parameterizing tidal dissipation over rough topography. Geophysical Research Letters, 28 ( 5 ), 811 – 814. https://doi.org/10.1029/2000GL012044; Kokoska, S., & Zwillinger, D. ( 2000 ). Standard probability and statistics tables and formulae. Boca Raton: Chapman & Hall‐CRC.; Kunze, E. ( 2017 ). The internal‐wave‐driven meridional overturning circulation. Journal of Physical Oceanography, 47 ( 11 ), 2673 – 2689. https://doi.org/10.1175/JPO-D-16-0142.1
-
18
المؤلفون: Mangeon, Gaëtan
المساهمون: Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Université de Pau et des Pays de l'Adour, Rémi Manceau
المصدر: Mécanique des fluides [physics.class-ph]. Université de Pau et des Pays de l'Adour, 2020. Français. ⟨NNT : 2020PAUU3018⟩
مصطلحات موضوعية: Modélisation proche-paroi, [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Mechanics of the fluids [physics.class-ph], Relaxation Elliptique, Fermeture du second ordre, Variance de la température, Differential Flux Model, Elliptic blending, Turbulent heat flux, Taux de dissipation de la variance de température, Near-wall modeling, Second-moment closure, Variance dissipation rate, Modélisation de la turbulence, Temperature variance, Flux Thermique Turbulent, Turbulence modeling
-
19
المؤلفون: Mangeon, Gaëtan
المساهمون: Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Computational AGility for internal flows sImulations and compaRisons with Experiments (CAGIRE), Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Pau et des Pays de l'Adour (UPPA), Mécanique des Fluides, Energies et Environnement (EDF R&D MFEE), EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Université de Pau et des Pays de l'Adour, Rémi Manceau, Jean-François Wald [Co-encadrant], ANR-17-CE06-0005,MONACO_2025,Modélisation de la convection naturelle : un défi pour l'ambition Tout Numérique 2025(2017)
المصدر: Mécanique des fluides [physics.class-ph]. Université de Pau et des Pays de l'Adour, 2020. Français. ⟨NNT : ⟩
Mécanique des fluides [physics.class-ph]. Université de Pau et des Pays de l'Adour, 2020. Français. ⟨NNT : 2020PAUU3018⟩
Mécanique des fluides [physics.class-ph]. Université de Pau et des Pays de l'Adour, 2020. Françaisمصطلحات موضوعية: Taux de dissipation de la variance, Modélisation proche-paroi, Pondération elliptique, [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Mechanics of the fluids [physics.class-ph], Relaxation Elliptique, Fermeture du second ordre, Variance de la température, Elliptic blending, Differential Flux Model, [SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph], Taux de dissipation de la variance de température, Turbulent heat flux, Modèle de transport des flux, Variance de température, Near-wall modeling, Second-moment closure, Variance dissipation rate, Modélisation de la turbulence, Temperature variance, Flux Thermique Turbulent, Modélisation de proche paroi, Fermeture au second ordre, Flux thermiques turbulents, Second- moment closure, Turbulence modeling
-
20Dissertation/ Thesis
المؤلفون: Mangeon, Gaëtan
المساهمون: Laboratoire de Mathématiques et de leurs Applications Pau (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Computational AGility for internal flows sImulations and compaRisons with Experiments (CAGIRE), Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Pau et des Pays de l'Adour (UPPA), Mécanique des Fluides, Energies et Environnement (EDF R&D MFEE), EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Université de Pau et des Pays de l'Adour, Rémi Manceau, Jean-François Wald Co-encadrant, ANR-17-CE06-0005,MONACO_2025,Modélisation de la convection naturelle : un défi pour l'ambition Tout Numérique 2025(2017)
المصدر: https://theses.hal.science/tel-02923253 ; Mécanique des fluides [physics.class-ph]. Université de Pau et des Pays de l'Adour, 2020. Français. ⟨NNT : ⟩.
مصطلحات موضوعية: Variance dissipation rate, Temperature variance, Elliptic blending, Differential Flux Model, Second- moment closure, Near-wall modeling, Turbulent heat flux, Turbulence modeling, Taux de dissipation de la variance, Variance de température, Pondération elliptique, Modèle de transport des flux, Fermeture au second ordre, Flux thermiques turbulents, Modélisation de la turbulence, Modélisation de proche paroi, [SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph]
Relation: tel-02923253; https://theses.hal.science/tel-02923253; https://theses.hal.science/tel-02923253/document; https://theses.hal.science/tel-02923253/file/Manuscrit_Gaetan_Mangeon.pdf