-
1Academic Journal
المؤلفون: Owczarek, Małgorzata. Autor
المصدر: CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; http://195.187.71.2/ipac20/ipac.jsp?profile=geogpan&index=BOCLC&term=ee95400564 ; CBGiOS. IGiPZ PAN, sygn.: Cz.2085, Cz.2173, Cz.2406
مصطلحات موضوعية: bioclimate, Poland, cold stress, UTCI, air temperature, canonical correlation, bioklimat, Polska, stres zimna, temperatura powietrza, korelacja kanoniczna
Relation: Geographia Polonica; Barne tt, T.P., Preisendorfer, R. (1987). Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis. Monthly Weather Review, 115, 1825-1850. https://doi.org/10.1175/1520-0493(1987)1152.0.CO;2; Bartoszek, K., Wereski, S., Krzyżewska, A., Dobek, M. (2017). The influence of atmospheric circulation on bioclimatic conditions in Lublin (Poland). Bulletin of Geography, Physical Geography Series, 12, 41-49. https://doi.org/10.1515/bgeo-2017-0004; Benestad, R.E. (2002). Empirically downscaled temperature scenarios for northern Europe. Climate Research, 21, 105-125. https://doi.org/10.3354/cr021105; Błażejczyk, K. (2005). MENEX_2005 − the updated version of man - environment heat exchange model. https://www.igipz.pan.pl/tl_files/igipz/ZGiK/opracowania/indywidualne/blazejczyk/MENEX_2005.pdf [1 February 2021]; Błażejczyk, K., Baranowski, J., Błażejczyk, A. (2015). Wpływ klimatu na stan zdrowia w Polsce: stan aktualny oraz prognoza do 2100 roku. Warsaw: Wydawnictwo Akademickie SEDNO.; Błażejczyk, K., Baranowski, J., Jendritzky, G., Błażejczyk, A., Bröde, P., Fiala, D. (2015). Regional features of the bioclimate of Central and Southern Europe against the background of the Köppen-Geiger climate classification. Geographia Polonica, 88(3), 439-453. https://doi.org/10.7163/GPol.0027; Błażejczyk, K., Bröde, P., Fiala, D., Havenith, G., Holmér, I., Jendritzky, G., Kampmann, B., Kunert, A. (2010). Principles of the new Universal Thermal Climate Index (UTCI) and its application to bioclimatic research in European scale. Miscellanea Geographica, 14, 91-102. https://doi.org/10.2478/mgrsd-2010-0009; Błażejczyk, K., Epstein, Y., Jendritzky, G., Staiger, H., Tinz, B. (2012). Comparison of UTCI to selected thermal indices. International Journal of Biometeorology, 56(3), 515-535. https://doi.org/10.1007/s00484-011-0453-2; Błażejczyk, K., Jendritzky, G., Bröde, P., Fiala, D., Havenith, G., Epstein, Y., Psikuta, A., Kampmann, B. (2013). An introduction to the Universal Thermal Climate Index (UTCI). Geographia Polonica, 86(1), 5-10. https://doi.org/10.7163/GPol.2013.1; Błażejczyk, K., Kuchcik, M., Dudek, W., Kręcisz, B., Błażejczyk, A., Milewski, P., Szmyd, J., Pałczyński, C. (2016). Urban heat island and bioclimatic comfort in Warsaw. In F. Musco (Ed.) Counteracting urban heat island effects in a global climate change scenario. Springer International Publishing. https://doi.org/10.1007/978-3-319-10425-6_11; Błażejczyk, K., Kunert, A. (2011). Bioklimatyczne uwarunkowania rekreacji i turystyki w Polsce. Monografie, 13, Warsaw: IGiPZ PAN.; Błażejczyk, K., Nejedlik, P., Skrynyk, O., Halaś, A., Błażejczyk, A., Mikulova, K. (2020). Influence of geographical factors on thermal stress in northern Carpathians. International Journal of Biometeorology, Special Issue: UTCI - 10 years of applications. https://doi.org/10.1007/s00484-020-02011-x; Błażejczyk, M., Błażejczyk, K. (2006). Bioklima ver. 2.6. Software (2010). https://www.igipz.pan.pl/Bioklima-zgik.html [1 February 2021]; Bröde, P., Fiala, D., Błażejczyk, K., Holmer, I., Jendritzky, G., Kampmann, B., Tinz, B., Havenith, G. (2012). Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology, 56(3), 481-449. https://doi.org/10.1007/s00484-011-0454-1; Bröde, P., Krüger, E.L., Fiala, D. (2013). UTCI: validation and practical application to the assessment of urban outdoor thermal comfort. Geographia Polonica, 86(1), 11-20. https://doi.org/10.7163/GPol.2013.2; Bryś, K., Ojrzyńska, H. (2016). Bodźcowość warunków biometeorologicznych we Wrocławiu (Stimulating qualities of biometeorological conditions in Wrocław). Acta Geographica Lodziensia, 104, 193-200.; Busuioc, A., Tomozeiu, R., Cacciamani, C. (2008). Statistical downscaling model based on canonical correlation analysis for winter extreme precipitation events in the Emilia-Romagna region. International Journal of Climatology, 28, 449-464. https://doi.org/10.1002/joc.1547; Cattiaux, J., Vautard, R., Cassou, C., You, P., Masson-Delmotte, V., Codron, F. (2010). Winter 2010 in Europe: A cold extreme in a warming climate. Geophysical Research Letters, 37, L20704. https://doi.org/10.1029/2010GL044613; Chen, YC., Matzarakis, A. (2018). Modified physiologically equivalent temperature-basics and applications for western European climate. Theoretical and Applied Climatology, 132, 1275-1289. https://doi.org/10.1007/s00704-017-2158-x; Di Napoli, C., Pappenberger, F., Cloke, H.L. (2018). Assessing heat-related health risk in Europe via the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology, 62(7), 1155-1165. https://doi.org/10.1007/s00484-018-1518-2; Domonokos, P., Kysely, J., Piotrowicz, K., Petrovic, P., Likso, T. (2003). Variability of extreme temperature events in southcentral Europe during the 20th century and its relationship with large-scale circulation. International Journal of Climatology, 23, 987-1010. https://doi.org/10.1002/joc.929; Fiala, D., Havenith, G., Bröde, P., Kampmann, B., Jendritzky, G. (2012). UTCI Fiala multi-node model of human heat transfer and temperature regulation. International Journal of Biometeorology, 56, 429-441. https://doi.org/10.1007/s00484-011-0424-7; Fröhlich, D., Matzarakis, A. (2020). Calculating human thermal comfort and thermal stress in the PALM model system 6.0. Geoscientific Model Development, 13, 3055-3065.; Gasparrini, A., Guo, Y., Hashizume, M., Lavigne, E., Zanobetti, A., Schwartz, J., Tobias, A., Tong, S., Rocklöv, J., Forsberg, B., Leone, M., De Sario, M., Bell, M.L., Guo, Y.L.L., Wu, Ch., Kan, H., Yi, S-M., de Sousa Zanotti Stagliorio Coelho, M., Saldiva, P.H.N.,… Armstrong, B. (2015). Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet, 386, 369-375. https://doi.org/10.1016/S0140-6736(14)62114-0; Ge, Q., Kong, Q., Xi, J., Zheng, J. (2017). Application of UTCI in China from tourism perspective. Theoretical and Applied Climatology, 128, 551-561. https://doi.org/10.1007/s00704-016-1731-z; Geletič, J., Lehnert, M., Krč, P., Resler, J., Krayenhoff, E.S. (2021). High-resolution modelling of thermal exposure during a hot spell: A case study using PALM-4U in Prague, Czech Republic. Atmosphere, 12(2), 175. https://doi.org/10.3390/atmos12020175; Głogowski, A., Bryś, K., Perona, P. (2020). Bioclimatic conditions of the Lower Silesia region (South-West Poland) from 1966 to 2017. International Journal of Biometeorology, Special Issue: UTCI - 10 years of applications. https://doi.org/10.1007/s00484-020-01970-5; Holmér, I. (1988). Assessment of cold stress in terms of required clothing insulation - IREQ. International Journal of Industrial Ergonomics, 3(2),159-166. https://doi.org/10.1016/0169-8141(88)90017-0; Jendritzky, G., de Dear, R., Havenith, G. (2012). UTCI - why another thermal index? International Journal of Biometeorology, 56(3), 421-428. https://doi.org/10.1007/ s00484-011-0513-7; Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woolen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., Joseph, D. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorology Society, 77, 437-470. https://doi.org/10.1175/1520-0477(1996)0772.0.CO;2; Keatinge, W.R. (2002). Winter mortality and its causes. International Journal of Circumpolar Health, 61(4), 292-299. https://doi.org/10.3402/ijch.v61i4.17477; Kolendowicz, L., Półrolniczak, M., Szyga-Pluta, K., Bednorz, E. (2018). Human biometeorological conditions in the southern Baltic coast based on the Universal Thermal Climate Index (UTCI). Theoretical and Applied Climatology, 134, 363-379. https://doi.org/10.1007/s00704-017-2279-2; Krüger, E.L., Vieira Silva, T.J., da Silveira Hirashima, S.Q., Grala da Cunha, E., Alcântara, R.L. (2020). Calibrating UTCI'S comfort assessment scale for three Brazilian cities with different climatic conditions. International Journal of Biometeorology, Special Issue: UTCI - 10 years of applications. https://doi.org/10.1007/s00484-020-01897-x; Krzyżewska, A., Wereski, S., Dobek, M. (2020). Summer UTCI variability in Poland in the twenty-first century. International Journal of Biometeorology, Special Issue: UTCI - 10 years of applications. https://doi.org/10.1007/s00484-020-01965-2; Kuchcik, M. (2017). Warunki termiczne w Polsce na przełomie XX I XXI wieku i ich wpływ na umieralność. Prace Geograficzne, 263, Warsaw: IGiPZ PAN.; Kuchcik, M. (2020). Mortality and thermal environment (UTCI) in Poland - long-term, multi-city study. International Journal of Biometeorology, Special Issue: UTCI - 10 years of applications https://doi.org/10.1007/s00484-020-01995-w; Kuchcik, M., Błażejczyk, K., Halaś, A. (2021). Long-term changes in hazardous heat and cold stress in humans: multi-city study in Poland. International Journal of Biometeorology, Special Issue: UTCI - 10 years of applications. https://doi.org/10.1007/s00484-020-02069-7; Kyselý, J. (2008). Influence of the persistence of circulation patterns on warm and cold temperature anomalies in Europe: Analysis over the 20th century. Global and Planetary Change, 62, 147-163. https://doi.org/10.1016/j.gloplacha.2008.01.003; Laschewski, G., Jendritzky, G. (2002). Effects of the thermal environment on human health: an investigation of 30 years of daily mortality data from SW Germany. Climate Research, 21(1), 91-103. doi:10.3354/cr021091Laschewski, G., Jendritzky, G. (2002). Effects of the thermal environment on human health: an investigation of 30 years of daily mortality data from SW Germany. Climate Research, 21(1), 91-103. doi:10.3354/cr021091; Lehnert, M., Tokar, V., Jurek, M., Geletič, J. (2020). Summer thermal comfort in Czech cities: measured effects of blue and green features in city centres. International Journal of Biometeorology. https://doi.org/10.1007/s00484-020-02010-y; Lhotka, O., Kyselý, J. (2015). Characterizing joint effects of spatial extent, temperature magnitude and duration of heat waves and cold spells over Central Europe. International Journal of Climatology, 35(7),1232-1244. https://doi.org/10.1002/joc.4050; Maak, K., von Storch, H. (1997). Statistical downscaling of monthly mean air temperature to the beginning of flowering of Galanthus nivalis L. in Northern Germany International Journal of Biometeorology, 41, 5-12. https://doi.org/10.1007/s004840050046; Matulla, C., Scheifinger, H., Menzel, A., Koch, E. (2003). Exploring two methods for statistical downscaling of Central European phenological time series. International Journal of Biometeorology, 48(2), 56-64. https://doi.org/10.1007/s00484-003-0186-y; Matzarakis, A., Mayer, H., Iziomon, M.G. (1999). Applications of a universal thermal index: physiological equivalent temperature. International Journal of Biometeorology, 43, 76-84. https://doi.org/10.1007/s004840050119; Matzarakis, A., Muthers, S., Rutz, F. (2014). Application and comparison of UTCI and PET in temperate climate conditions. Finisterra, 49(98), 21-31. http://dx.doi.org/10.18055/Finis6453; Matzarakis, A., Rutz, F., Mayer, H. (2010). Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. International Journal of Biometeorology, 54, 131-139. https://doi.org/10.1007/s00484-009-0261-0; Milewski, P. (2013). Application of the UTCI to the local bioclimate of Poland's Ziemia Kłodzka region. Geographia Polonica, 86, 47-54. https://doi.org/10.7163/GPol.2013.6; Novak, M. (2013). Use of the UTCI in the Czech Republic. Geographia Polonica, 86, 21-28. https://doi.org/10.7163/GPol.2013.3; Nowosad, M., Rodzik, B., Wereski, S., Dobek, M. (2013). The UTCI index in Lesko and Lublin and its circulation determinants. Geographia Polonica, 86, 29-36. https://doi.org/10.7163/GPol.2013.4; Okoniewska, M. (2020). Daily and seasonal variabilities of thermal stress (based on the UTCI) in air masses typical for Central Europe: an example from Warsaw. International Journal of Biometeorology, Special issue: UTCI - 10 years of applications. https://doi.org/10.1007/s00484-020-01997-8; Owczarek, M., Fi lipiak, J. (2016). Contemporary changes of thermal conditions in Poland, 1951-2015. Bulletin of Geography. Physical Geography Series, 10, 31-50. https://doi.org/10.1515/bgeo-2016-0003; Owczarek, M. (2019). The influence of large-scale factors on the heat load on human beings in Poland in the summer months. Theoretical and Applied Climatology, 137(1-2), 855-869. https://doi.org/10.1007/s00704-018-2633-z; Petralli, M., Massetti, L., Pearlmutter, D., Brandani, G., Messeri, A., Orlandini, S. (2020). UTCI field measurements in an urban park in Florence (Italy). Miscellanea Geographica, 24(3), 111-117. https://doi.org/10.2478/mgrsd-2020-0017; Pfahl, S. (2014). Characterising the relationship between weather extremes in Europe and synoptic circulation features. Natural Hazards and Earth System Sciences, 14, 1461-1475. https://doi.org/10.5194/nhess-14-1461-2014; Plavcová, E., Kyselý, J. (2016). Overly persistent circulation in climate models contributes to overestimated frequency and duration of heat waves and cold spells. Climate Dynamics, 46(9-10), 2805-2820. https://doi.org/10.1007/s00382-015-2733-8; Porębska, M., Zdunek, M. (2013). Analysis of extreme temperature events in Central Europe related to high pressure blocking situations in 2001-2011. Meteorolologische Zeitschrift, 22(5), 533-540. https://doi.org/10.1127/0941-2948/2013/0455; Półrolniczak, M., Szyga-Pluta, K., Kolendowicz, L. (2016). Bioklimat wybranych miast pasa Pobrzeży Południowobałtyckich na podstawie uniwersalnego wskaźnika obciążenia cieplnego. Acta Geographica Lodziensia, 104, 147-161.; Provençal, S., Bergeron, O., Leduc, R., Barrette, N. (2016). Thermal comfort in Quebec City, Canada: sensitivity analysis of the UTCI and other popular thermal comfort indices in a mid-latitude continental city. International Journal of Biometeorology, 60(4), 591-603. https://doi.org/10.1007/s00484-015-1054-2; Santos, J., Corte-Real, J., Ulbrich, U., Palutikof, J. (2007). European winter precipitation extremes and large-scale circulation: A coupled model and its scenarios. Theoretical and Applied Climatology, 87, 85-102. https://doi.org/10.1007/s00704-005-0224-2; Santos, J.A., Malheiro, A.C., Pinto, J.G., Jones, G.V. (2012). Macroclimate and viticultural zoning in Europe: observed trends and atmospheric forcing. Climate Research, 51, 89-103. https://doi.org/10.3354/cr01056; Staiger, H., Laschewski, G., Matzarakis, A. (2019). Selection of appropriate thermal indices for applications in human biometeorological studies. Atmosphere,10(1), 18. https://doi.org/10.3390/atmos10010018; Tomczyk, A.M., Bednorz, E., Półrolniczak, M., Kolendowicz, L. (2019). Strong heat and cold waves in Poland in relation with the large-scale atmospheric circulation. Theoretical and Applied Climatology, 137(3-4), 1909-1923. https://doi.org/10.1007/s00704-018-2715-y; Tomczyk, A.M., Bednorz, E., Sulikowska, A. (2019). Cold spells in Poland and Germany and their circulation conditions. International Journal of Climatology, 39, 4002-4014. https://doi.org/10.1002/joc.6054; Tomczyk, A.M., Bednorz, E., Szyga-Pluta, K. (2021). Changes in air temperature and snow cover in winter in Poland. Atmosphere, 12(1), 68. https://doi.org/10.3390/atmos12010068; Tomczyk, A.M., Owczarek, M. (2020). Occurrence of strong and very strong heat stress in Poland and its circulation conditions. Theoretical and Applied Climatology, 139(3-4), 893-905. https://doi.org/10.1007/s00704-019-02998-3; Tomozeiu, R., Pasqui, M., Quaresima, S. (2018). Future changes of air temperature over Italian agricultural areas: a statistical downscaling technique applied to 2021-2050 and 2071-2100 periods. Meteorology and Atmospheric Physics, 130, 543-563. https://doi.org/10.1007/s00703-017-0536-7; Urban, A., Kyselý, J. (2014). Comparison of UTCI with other thermal indices in the assessment of heat and cold effects on cardiovascular mortality in the Czech Republic. International Journal of Environmental Research and Public Health, 11, 952-967. https://doi.org/10.3390/ijerph110100952; Ustrnul, Z., Czekierda, D., Wypych, A. (2010). Extreme values of air temperature in Poland according to different atmospheric circulation classifications. Physics and Chemistry of the Earth, 35, 429-436. https://doi.org/10.1016/j.pce.2009.12.012; Vinogradova, V. (2020). Using the Universal Thermal Climate Index (UTCI) for the assessment of bioclimatic conditions in Russia. International Journal of Biometeorology, Special issue: UTCI - 10 years of applications. https://doi.org/10.1007/s00484-020-01901-4; von Storch, H., Zwiers, F.W. (1999). Statistical analysis in climate research. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511612336; Wereski, S., Krzyżewska, A., Dobek, M. (2020). Winter UTCI variability in Poland in the 21st century. Miscellanea Geographica, 24(3), 128-137. https://doi.org/10.2478/mgrsd-2020-0021; Werner, P.C., von Storch, H. (1993). Interannual variability of Central European mean temperature in January-February and its relation to large-scale circulation. Climate Research, 3, 195-207.; Wibig, J. (2007). Fale ciepła i chłodu w Środkowej Polsce na przykładzie Łodzi. Acta Universitatis Lodziensis, Folia Geographica Physica, 8, 27-61. http://hdl.handle.net/11089/2852; Wibig, J., Podstawczyńska, A., Rzepa, M., Piotrowski, P. (2009). Cold waves in Poland - frequency, trends, and relationships with atmospheric circulation. Geographia Polonica, 82, 47-59.; Wilks, D.S. (2005). Statistical methods in the atmospheric sciences. International Geophysics Series. Burlington: Elsevier.; Wójcik, R., Miętus, M. (2012). Rola cyrkulacji atmosferycznej w kształtowaniu długookresowych zmian temperatury powietrza w Polsce. In Z. Bielec-Bąkowska, E. Łupikasza, A. Widawski (Eds.), Rola cyrkulacji atmosfery w kształtowaniu klimatu (pp. 385-397), Sosnowiec: Wydział Nauk o Ziemi Uniwersytetu Śląskiego.; oai:rcin.org.pl:publication:229995; https://rcin.org.pl/dlibra/publication/edition/194931/content; oai:rcin.org.pl:194931
-
2Academic Journal
المؤلفون: Pecelj, Milica. Autor, Błażejczyk, Anna. Autor, Vagić, Nemanja. Autor, Ivanović, Peca. Autor
المصدر: CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; http://195.187.71.2/ipac20/ipac.jsp?profile=geogpan&index=BOCLC&term=ee95400564 ; CBGiOS. IGiPZ PAN, sygn.: Cz.2085, Cz.2173, Cz.2406
مصطلحات موضوعية: biothermal conditions, UTCI, very strong heat stress, very strong cold stress, Vranje, warunki biotermiczne, bardzo silny stres ciepła, bardzo silny stres zimna
Relation: Geographia Polonica; Anagnostopoulou, C., Tolika, K., Lazoglou, G., Machairas, P. (2017). The Exceptionally cold January of 2017 over the Balkan Peninsula: A climatological and synoptic analysis. Atmosphere, 8(12), 252. https://doi.org/10.3390/atmos8120252; Basarin, B., Lukić, T., Matzarakis, A. (2016). Quantification and assessment of heat and cold waves in Novi Sad, Northern Serbia. International Journal of Biometeorology, 60, 139-150. https://doi.org/10.1007/s00484-015-1012-z; Basarin, B., Lukić, T., Mesaroš, M., Pavić, D., Djordjević, J., Matzarakis, A. (2018). Spatial and temporal analysis of extreme bioclimate conditions in Vojvodina, Northern Serbia. International Journal of Climatology, 38, 142-157. https://doi.org/10.1002/joc.5166; BioKlima, 1994. BioKlima 2.6 (version 2.6) - Universal tool for bioclimatic and thermophysiological studies. https://www.igipz.pan.pl/Bioklima-zgik.html; Bleta, A., Nastos, P., Matzarakis, A. (2014). Assessment of bioclimatic conditions on Crete Island, Greece. Regional Environmental Changes, 14, 1967-1981. https://doi.org/10.1007/s10113-013-0530-7; Błażejczyk, K., Błażejczyk, A. (2014). Assessment of bioclimatic variability on regional and local scales in central Europe using UTCI. Scientific Annals of "Alexandru Ioan Cuza" University of IASI, 60(1), S. II C., Geography Series, AL.I. Cuza University Press, 67-82.; Błażejczyk, K., Bröde, P., Fiala, D., Havenith, G., Holmér, I., Jendritzky, G., Kampmann, B., Kunert, A. (2010). Principles of the new universal thermal climate index (UTCI) and its application to bioclimatic research in European scale. Miscellanea Geographica, 14, 91-102. https://doi.org/10.2478/mgrsd-2010-0009; Błażejczyk, K., Bröde, P., Fiala, D., Havenith, G., Jendritzky, G., Kampmann, B. (2010). UTCI - New index for assessment of heat stress in man. Przegląd Geograficzny, 82, 49-72. https://doi.org/10.7163/PrzG.2010.1.2; Błażejczyk, K., Epstein, Y., Jendritzky, G., Staiger, H., Tinz, B. (2012). Comparison of UTCI to selected thermal indices. International Journal of Biometeorology, 56(3), 515-535. https://doi.org/10.1007/s00484-011-0453-2; Błażejczyk, K., Jendritzky, G., Brode, P., Fiala, D., Havenith, G., Epstein, Y., Psikuta, A., Kampmann, B. (2013). An introduction to the Universal Thermal Climate Index (UTCI). Geographia Polonica, 86(1), 5-10. http://doi.org/10.7163/GPol.2013.1; Błażejczyk, K., Kunert, A. (2011). Bioclimatic principles of recreation and tourism in Poland. 2nd edition. Monografie IGiPZ PAN, 13, Warsaw.; Błażejczyk, K., Twardosz, R. (2010). Long-term changes of bioclimatic conditions in Cracow (Poland). In R. Przybylak, R. Majorowicz, J. Brázdil, M. Kejna (Eds.), The Polish Climate in the European Context: An Historical Overview. pp. 235-246. Springer, Science + Business Media B.V. https://doi.org/10.1007/978-90-481-3167-9_10; Bröde, P., Krüger, E.L., Rossi, F.A., Fiala, D. (2012). Predicting urban outdoor thermal comfort by the Universal Thermal Climate Index UTCI-a case study in Southern Brazil. International Journal of Biometeorology, 56(3), 471-480. https://doi.org/10.1007/s00484-011-0452-3; Burkart, K., Meier, F., Schneider, A., Breitner, S., Canário, P., Alcoforado, M.J. Scherer, D., Endlicher, W. (2016). Modification of heat-related mortality in an elderly urban population by vegetation (urban green) and proximity to water (urban blue): Evidence from Lisbon, Portugal. Environmental Health Perspectives, 124, 927-934. https://doi.org/10.1289/ehp.1409529; Cheung, C.S.C., Hart, M.A. (2012). Climate change and thermal comfort in Hong Kong. International Journal of Biometeorology, 58(2), 137-148. https://doi.org/10.1007/s00484-012-0608-9; Coutts, A.M., White, E.C., Tapper, N.J., Beringer, J., Livesley, S.J. (2016). Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theoretical and Applied Climatology, 124(1-2), 55-68. https://doi.org/10.1007/s00704-015-1409-y; Croitorua, A.E., Piticarb, A. (2013). Changes in daily extreme temperatures in the extra-Carpathians regions of Romania. International Journal of Climatology, 33, 1987-2001. https://doi.org/10.1002/joc.3567; Denda, S.LJ, Micić, J.M. Milanović Pešić, A.Z., Brankov, J.J., Bjeljac, Ž.N. (2019). Utilization of geothermal springs as a renewable energy source: Vranjska Banja case study. Thermal Science, 23(6B), 4083-4093. https://doi.org/10.2298/TSCI190816391D; Di Napoli, C., Pappenberger, F., Cloke, H.L. (2018). Assessing heat-related health risk in Europe via the Universal Thermal Climate Index (UTCI). International Journal Biometeorology, 62(7), 1155-1165. https://doi.org/10.1007/s00484-018-1518-2; Di Napoli, C., Pappenberger, F., Cloke, H.L. (2019). Verification of heat stress thresholds for a healthbased heat-wave definition. Journal of Applied Meteorology and Climatology, 58(6), 1177-1194. https://doi.org/10.1175/JAMC-D-18-0246.1; Djekić, T., Ristić, S., Stamenković, S., Šajn, R., Engelman, M. (2020). Lichens as indicators of air quality in balneological center Prolom Banja (Southern Serbia). Journal of the Geographical Institute "Jovan Cvijić" SASA, 70(2), 101-113. https://doi.org/10.2298/IJGI2002101D; Drljača, V., Tošić, I., Unkašević, M. (2009). An analysis of heat waves in Belgrade and Niš using the climate index. Journal of Geographical Institute Jovan Cvijić SASA, 59(1), 49-62. https://doi.org/10.2298/IJGI0959049D; Farajzadeh, H., Saligheh, M., Alijani, B., Matzarakis, A. (2015). Comparison of selected thermal indices in the northwest of Iran. Natural Environment Change, 1(1), 1-20.; Hartz, D.A., Brazel, A.J., Golden, J.S. (2013). A comparative climate analysis of heat-related emergency 911 dispatches: Chicago, Illinois and Phoenix, Arizona USA 2003 to 2006. International Journal of Biometeorology, 57(5), 669-678. https://doi.org/10.1007/s00484-012-0593-z; Havenith, G., Fiala, D., Błazejczyk, K., Richards, M., Bröde, P., Holmér, I., Rintamaki, H., Benshabat, Y., Jendritzky, G. (2012). The UTCI clothing model. International Journal of Biometeorology, 56(3), 461-470. https://doi.org/10.1007/s00484-011-0451-4; Honjo, T., Seo, Y., Yamasaki, Y., Tsunematsu, N., Yokoyama, H., Yamato, H., Mikami, T. (2018). Thermal comfort along the marathon course of the 2020 Tokyo Olympics. International Journal of Biometeorology, 62(8), 1407-1419. https://doi.org/10.1007/s00484-018-1539-x; Hundecha, Y, Bardossy, A. (2005). Trends in daily precipitation and temperature extremes across Western Germany in the second half of the 20th century. International Journal of Climatology, 25, 1189-1202. https://doi.org/10.1002/joc.1182]; IPCC. 2007. In Climate Change: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L. (Eds.), Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.; Jendritzky, G., de Dear, R., Havenith, G. (2012). UTCI - why another thermal index? International Journal of Biometeorology, 56(3), 421-428. https://doi.org/10.1007/s00484-011-0513-7; Kolendowicz, L., Półrolniczak, M., Szyga-Pluta, K., Bednorz, E. (2018). Human-biometeorological conditions in the southern Baltic coast based on the universal thermal climate index (UTCI). Theoretical and Applied Climatology, 134, 363-379. https://doi.org/10.1007/s00704-017-2279-2; Kostopoulou, E., Jones, P. (2005). Assessment of climate extremes in Eastern Mediterranean. Meteorological and Atmospherical Physics, 89, 69-85. https://doi.org/10.1007/s00703-005-0122-2; Kottek, M., Greiser, J., Beck, C., Rudolf, B., Rubel, F. (2006). World Map of the Koppen-Geiger climate classification updated. Meteorologische Zeitschrif, 15(3), 259-263. https://doi.org/10.1127/0941-90 2948/2006/0130; Kuchcik, M. (2017). Zmiany warunków termicznych w Polsce na przełomie XX i XXI wieku i ich wpływ na umieralność. Prace Geograficzne, 263, Warsaw: IGiPZ PAN.; Malinović-Milićević, S., Mijatović, Z., Arsenić, I., Podrašćanin, Z., Firanj Sremac, A., Radovanović, M., Drešković, N. (2020). The importance of ground-based and satellite observations for monitoring and estimation of UV radiation in Novi Sad (Serbia). Journal of the Geographical Institute "Jovan Cvijić" SASA, 70(1), 57-70. https://doi.org/10.2298/IJGI2001057M; Matzarakis, A., Muthers, S., Rutz, F. (2014). Application and comparison of UTCI and PET in temperate climate conditions. Finisterra, 49, 21-31. https://doi.org/10.18055/Finis6453; Mąkosza, A., Nidzgorska-Lencewicz, J. (2017). Selected thermal and biothermal aspects of cities in Poland. Polish Journal of Natural Science, 32(4), 771-782.; McGregor, G., Vanos, J. (2018). Heat: A primer for public health researchers. Public Health, 161, 138-146. https://doi.org/10.1016/j.puhe.2017.11.005; Meteorological Yearbook, 2000-2018. Republic Hydrometeorological Service of Serbia. http://www.hidmet.gov.rs/latin/meteorologija/klimatologija_godisnjaci.php; Milewski, P. (2013). Application of the UTCI to the local bioclimate of Poland's Ziemia Kłodzka Region. Geographia Polonica, 86(1), 47-54. https://doi.org/10.7163/GPol.2013.6; Milivojevic, M., Krunic, O., Martinovic, M. (2005). Serbian spas as a base for tourism development. In Proceedings World Geothermal Congress, Antalya, Turkey, 24-29 April 2005. https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2005/2110.pdf; Milovanović, B., Radovanović, M., Stanojević , G., Pecelj, M., Nikolić , J. (2017). Klima Srbije. In M. Radovanović (Ed.), Geografija Srbije (pp. 94-105). Belgrade, Serbia: Geographical Institute Jovan Cvijić SASA.; Milovanović, B., Ducić, V., Radovanović, M., Milivojević, M. (2017). Climate regionalisation of Serbia according to Köppen climate classification. Journal of the Geographical Institute "Jovan Cvijić" SASA, 67(2), 103-114. https://doi.org/10.2298/IJGI1702103M; Milovanović, B., Schuster, P., Radovanović, M., Ristić Vakanjac, V., Schneider, C., Milivojević, M. (2018). Spatial-Temporal variabilitz of air temperatures in Serbia in the period 1961-2010. Journal of Geographical Institute Jovan Cvijić SASA, 68(2), 157-175. https://doi.org/10.2298/IJGI1802157M; NASA. 2000. N42E021.SRTMGL1; N42E022.SRTMGL1 (Shuttle Radar Topography Mission - SRTM). http://earthexplorer.usgs.gov/(November, 2019); Nassiri, P., Monazzam, M.R., Golbabaei, F., Farhang Dehghan, S., Rafieepour, A., Mortezapour, A.R., Asghari, M. (2017). Application of Universal Thermal Climate Index (UTCI) for assessment of occupational heat stress in open-pit mines. Industrial Health, 55(5), 437-443. https://doi.org/10.2486/indhealth.2017-0018; Nastos, P., Matzarakis, A. (2012). The effect of air temperature and human thermal indices on mortality in Athens, Greece. Theoretical and Applied Climatology, 108, 591-599. https://doi.org/10.1007/s00704-011-0555-0; Nemeth, A. (2011). Changing thermal bioclimate in some Hungarian cities. Acta Climatologica Chorologica, 44-45, 93-101.; Pecelj, M., Đordđević, A., Pecelj, M.R., Pecelj-Purković, J., Filipović, D., Šećerov, V. (2017). Biothermal conditions on Mt. Zlatibor based on thermophysiological indices. Archive of Biological Sciences, 69(3), 455-461. https://doi.org/10.2298/ABS151223120P; Pecelj, M.M., Lukić, M.Z., Filipović, D.J., Protić, B.M., Bogdanović, U. (2020). Analysis of the Universal Thermal Climate Index during heat waves in Serbia. Natural Hazards and Earth System Science, 20, 2021-2036. https://doi.org/10.5194/nhess-20-2021-2020; Pecelj, M., Lukić, M., Vučičević, A., De Una-Alvarez, E., Esteves da Silva, CGJ., Freinkin, I., Ciganović, S., Bogdanović, U. (2018). Geoecological evaluation of local surroundings for the purposes of recreational tourism. Journal of Geographic Institute Jovan Cvijic SASA, 68(2), 215-231. https://doi.org/10.2298/IJGI1802215P; Pecelj, M.M., Trbić, G., Pecelj, M.R. (2013). Biothermal condition based on the Bioclimatic Index Heat Load. In Proceeding of the 6th International Conference on Climate Change, Global Warming and Biological Problems, Recent Advances in Environmental Science (pp. 250-254). Frederick University, Cyprus, Limassol.; Potchter, O., Cohen, P., Lin, TP., Matzarakis, A. (2018). Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Science of the Total Environment, 631-632, 390-406. https://doi.org/10.1016/j.scitotenv.2018.02.276; Radinović, D., Ćurić, M. (2011). Criteria for heat and cold wave duration indexes. Theoretical and Applied Climatology, 107(3-4), 505-510. https://doi.org/10.1007/s00704-011-0495-8; Roshan, G., Yousefi, R., Błażejczyk, K. (2018). Assessment of the climatic potential for tourism in Iran trough biometeorology clustering. International Journal of Biometeorology, 62(4), 525-542. https://doi.org/10.1007/s00484-017-1462-6; Stamenković, S. (1995). Vranje, geneza i naseobinska evolucija. Beograd: Geografski fakultet Univerziteta u Beogradu.; Stanojević, G.B., Miljanović, D.N., Doljak, D. Lj., Ćurčić, N.B., Radovanović, M.M., Malinović-Milićević, S.B., Hauriak, O. (2019). Spatio-temporal variability of annual PM2.5 concentrations and population exposure assessment in Serbia for the period 2001-2016. Journal of the Geographical Institute "Jovan Cvijić" SASA, 69(3), 197-211. https://doi.org/10.2298/IJGI1903197S; Stevanović, V. (2019). Elements of bioclimatological characteristics of Vranjska spa. The University Thought-Public in Natural Sciences, 9(1), 45-48. https://doi.org/10.5937/univtho9-22125; Theoharatos, G., Pantavou, K., Mavrakis, A., Spanou, A., Katavoutas, G., Efstathiou, P., Mpekas, P., Asimakopoulos, D. (2010). Heat waves observed in 2007 in Athens, Greece: Synoptic conditions, bioclimatological assessment, air quality levels and health effects. Environmental Research, 110, 152-161. https://doi.org/10.1016/j.envres.2009.12.002; Tolika, K., Maheras, P., Pytharoulis, I., Anagnostopoulou, C. (2014). The anomalous low and high temperatures of 2012 over Greece - An explanation from a meteorological and climatological perspective. Natural Hazards and Earth System Sciences, 14(3), 501-507. https://doi.org/10.5194/nhess-14-501-2014; Tomczyk, A.M., Owczarek, M. (2019). Occurrence of strong and very strong heat stress in Poland and its circulation conditions. Theoretical and Applied Climatology, 139, 893-905. https://doi.org/10.1007/s00704-019-02998-3; Tomczyk, A.M., 2016. Impact of atmospheric circulation on the occurrence of heat waves in southeastern Europe. Idojárás, 120(4), 395-414.; Unkašević, M., Tošić, I. (2011). The maximum temperatures and heat waves in Serbia during the summer of 2007. Climate Change, 108(1-2), 207-223. https://doi.org/10.1007/s10584-010-0006-4; Unkašević, M., Tošić, I. (2015). Seasonal analysis of cold and heat waves in Serbia during the period 1949-2012. Theoretical and Applied Climatology, 120(1-2), 29-40. https://doi.org/10.1007/s00704-014-1154-7; Urban, A., Kyselý, J. (2014). Comparison of UTCI with other thermal indices in the assessment of heat and cold effects on cardiovascular mortality in the Czech Republic. International Journal of Environmental Research Public Health, 11(1), 952-967. https://doi.org/10.3390/ijerph110100952; Vissine, W., Houssou, S.C., Błażejczyk, K. (2013). Application de l'indice universel de charge thermique dans le contexte Africain: Exemple de Cotonou (Repiblique du Benin). In Conference paper: XXVIème colloque de l'Association Internationale de Climatologie (pp. 105-109).; oai:rcin.org.pl:publication:229606; https://rcin.org.pl/dlibra/publication/edition/194928/content; oai:rcin.org.pl:194928
-
3Academic Journal
المؤلفون: Nowosad, Marek, Rodzik, Beata, Wereski, Sylwester, Dobek, Mateusz
المصدر: CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; http://195.187.71.2/ipac20/ipac.jsp?profile=geogpan&index=BOCLC&term=ee95400564 ; CBGiOS. IGiPZ PAN, sygn.: Cz.2085, Cz.2173, Cz.2406
مصطلحات موضوعية: UTCI, cold stress, atmospheric circulation, zonal circulation index, meridional circulation index, stres zimna, cyrkulacja atmosferyczna, wskaźnik cyrkulacji strefowej, wskaźnik cyrkulacji południkowej
وصف الملف: File size 0,6 MB; application/pdf; Rozmiar pliku 0,6 MB
Relation: Geographia Polonica; 1. BŁAŻEJCZYK K., 2011. BioKlima – Universal tool for bioclimatic thermophysiological studies, Warsaw: Institute of Geography and Spatial Organization, Polish Academy of Sciences, http://www.igipz.pan.pl/Bioklima-zgik.html [2 October 2011].; 2. BŁAŻEJCZYK K., JENDRITZKY G., BRÖDE P., FIALA D., HAVENITH G., EPSTEIN Y., PSIKUTA A., KAMPMANN B., 2013. An Introduction to the Universal Thermal Climate Index (UTCI). Geographia Polonica, vol. 86, iss. 1, pp. 5-10.; 3. BRÖDE P., KRÜGER E. L., FIALA D., 2013, UTCI validation and practical application to the assessment of urban outdoor thermal comfort. Geographia Polonica, vol. 86, iss. 1, pp. 11-20.; 4. KALNAY E., KANAMITSU M., KISTLER R., COLLINS W., DEAVEN D., GANDIN L., IREDELL M., SAHA S., WHITE G., WOOLLEN J., ZHU Y., LEETMAA A., REYNOLDS R., CHELLIAH M., EBISUZAKI W., HIGGINS W., JANOWIAK J., MO K.C., ROPELEWSKI C., WANG J., JENNE R., JOSEPH D., 1996. The NCEP/ NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, vol. 77, no. 3, pp. 437-470.; 5. LITYŃSKI J., 1969. Liczbowa klasyfikacja typów cyrkulacji i typów pogody dla Polski. Prace Państwowego Instytutu Hydrologiczno-Meteorologicznego, vol. 97, pp. 3-14.; 5. LITYŃSKI J., 1970. Classification numerique des types de circulation et des types de temps en Pologne. Cahiers de Geographie de Quebec, vol. 14, pp. 329-338.; http://dx.doi.org/10.7202/020930ar -; 6. NOWOSAD M., 2007. O subiektywności percepcji na przykładzie cyrkulacji atmosferycznej. [in:] J. Szkutnicki, U. Kossowska-Cezak, E. Bogdanowicz, M. Ceran (eds.), Cywilizacja i żywioły, Warszawa: Polskie Towarzystwo Geofizyczne, Instytut Meteorologii i Gospodarki Wodnej, pp. 93-98.; 7. NOWOSAD M., 2011. Variability of the meridional circulation index over Poland according to the Lityński classification formula, Prace i Studia Geograficzne, vol. 47, Warszawa: Wydział Geografii i Studiów Regionalnych, Uniwersytet Warszawski, pp. 41-48.; 8. NOWOSAD M., 2012. Calendar of zonal and meridional circulation indices over Poland according to the Lityński classification formula. Computer file, http://serwisy.umcs.lublin.pl/marek.nowosad/tercile.; 9. STANISZ A., 2007. Przystępny kurs statystyki z zastosowaniem Statistica PL. Modele liniowe i nieliniowe. vol. 2, Kraków: StatSoft, 865 pp.; oai:rcin.org.pl:publication:46826; https://rcin.org.pl/dlibra/publication/edition/29013/content; oai:rcin.org.pl:29013
-
4
المؤلفون: Dobek, Mateusz, Nowosad, Marek, Rodzik, Beata, Wereski, Sylwester
المصدر: CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406
CBGiOS. IGiPZ PAN, sygn.: Cz.2085, Cz.2173, Cz.2406 -
5Periodical
المؤلفون: Błażejczyk, K., Fiala, D., Richards, M., Rintamaki, H., Ruuhela, R.
المصدر: Problemy Klimatologii Polarnej.