يعرض 1 - 7 نتائج من 7 نتيجة بحث عن '"stem mass fraction"', وقت الاستعلام: 0.63s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal

    وصف الملف: application/pdf

    Relation: Umaña, María Natalia; Cao, Min; Lin, Luxiang; Swenson, Nathan G.; Zhang, Caicai (2021). "Trade‐offs in above‐ and below‐ground biomass allocation influencing seedling growth in a tropical forest." Journal of Ecology (3): 1184-1193.; https://hdl.handle.net/2027.42/167112; Journal of Ecology; Qi, Y., Wei, W., Chen, C., & Chen, L. ( 2019 ). Plant root‐shoot biomass allocation over diverse biomes: A global synthesis. Global Ecology and Conservation, 18 ( 18 ), e00606. https://doi.org/10.1016/j.gecco.2019.e00606; Vitousek, P. M., & Sanford, R. L. ( 1986 ). Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics, 17 ( 1 ), 137 – 167. https://doi.org/10.1146/annurev.es.17.110186.001033; Peng, Y., & Yang, Y. ( 2016 ). Allometric biomass partitioning under nitrogen enrichment: Evidence from manipulative experiments around the world. Scientific Reports, 6 ( March ), 1 – 7. https://doi.org/10.1038/srep28918; Peters, R. ( 1983 ). The Ecological Implications of Body Size (Cambridge Studies in Ecology). Cambridge University Press. https://doi.org/10.1017/CBO9780511608551; Poorter, H., & Nagel, O. ( 2000 ). The role of biomass allocation in the growth response of plants to different levels of light, CO 2, nutrients and water: A quantitative review. Australian Journal of Plant Physiology, 27 ( 6 ), 595 – 607. https://doi.org/10.1071/PP991730310‐7841/00/121191; Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., & Mommer, L. ( 2012 ). Biomass allocation to leaves, stems and roots: Meta‐analyses of interspecific variation and environmental control. New Phytologist, 193 ( 1 ), 30 – 50. https://doi.org/10.1111/j.1469‐8137.2011.03952.x; Poorter, L. ( 1999 ). Growth responses of 15 rain‐forest tree species to a light gradient: The relative importance of morphological and physiological traits. Functional Ecology, 13 ( 3 ), 396 – 410. https://doi.org/10.1046/j.1365‐2435.1999.00332.x; Poorter, L. ( 2007 ). Are species adapted to their regeneration niche, adult niche, or both? The American Naturalist, 169 ( 4 ), 433 – 442. https://doi.org/10.1086/512045; Vitousek, P. M. ( 1984 ). Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology, 65 ( 1 ), 285 – 298. https://doi.org/10.2307/1939481; Reich, P. B., Ellsworth, D. S., & Walters, M. B. ( 1998 ). Leaf structure (specific leaf area) modulates photosynthesis‐nitrogen relations: Evidence from within and across species and functional groups. Functional Ecology, 12 ( 6 ), 948 – 958. https://doi.org/10.1046/j.1365‐2435.1998.00274.x; Santiago, L. S., De Guzman, M. E., Baraloto, C., Vogenberg, J. E., Brodie, M., Hérault, B., Fortunel, C., & Bonal, D. ( 2018 ). Coordination and trade‐offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytologist, 218 ( 3 ), 1015 – 1024. https://doi.org/10.1111/nph.15058; Santiago, L. S., Kitajima, K., Wright, S. J., & Mulkey, S. S. ( 2004 ). Coordinated changes in photosynthesis, water relations and leaf nutritional traits of canopy trees along a precipitation gradient in lowland tropical forest. Oecologia, 139 ( 4 ), 495 – 502. https://doi.org/10.1007/s00442‐004‐1542‐2; Santiago, L. S., Schuur, E. A. G., & Silvera, K. ( 2005 ). Nutrient cycling and plant‐soil feedbacks along a precipitation gradient in lowland Panama. Journal of Tropical Ecology, 21 ( 4 ), 461 – 470. https://doi.org/10.1017/S0266467405002464; Santiago, L. S., Wright, S. J., Harms, K. E., Yavitt, J. B., Korine, C., Garcia, M. N., & Turner, B. L. ( 2012 ). Tropical tree seedling growth responses to nitrogen, phosphorus and potassium addition. Journal of Ecology, 100 ( 2 ), 309 – 316. https://doi.org/10.1111/j.1365‐2745.2011.01904.x; Shipley, B., & Meziane, D. ( 2002 ). The balanced‐growth hypothesis and the allometry of leaf and root biomass allocation. Functional Ecology, 16 ( 3 ), 326 – 331. https://doi.org/10.1046/j.1365‐2435.2002.00626.x; Taylor, B. N., Strand, A. E., Cooper, E. R., Beidler, K. V., Schönholz, M., & Pritchard, S. G. ( 2014 ). Root length, biomass, tissue chemistry and mycorrhizal colonization following 14 years of CO 2 enrichment and 6 years of N fertilization in a warm temperate forest. Tree Physiology, 34 ( 9 ), 955 – 965. https://doi.org/10.1093/treephys/tpu058; Turner, B. L., Brenes‐arguedas, T., & Condit, R. ( 2018 ). Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature, 555, 367 – 370. https://doi.org/10.1038/nature25789; Turner, B. L., & Engelbrecht, B. M. J. ( 2011 ). Soil organic phosphorus in lowland tropical rain forests. Biogeochemistry, 103 ( 1 ), 297 – 315. https://doi.org/10.1007/s10533‐010‐9466‐x; Umaña, M. N., Zhang, C., Cao, M., Lin, L., & Swenson, N. G. ( 2015 ). Commonness, rarity, and intraspecific variation in traits and performance in tropical tree seedlings. Ecology Letters, 18 ( 12 ), 1329 – 1337. https://doi.org/10.1111/ele.12527; Umaña, M. N., Zhang, C., Cao, M., Lin, L., & Swenson, N. G. ( 2018 ). Quantifying the role of intra‐specific trait variation for allocation and organ‐level traits in tropical seedling communities. Journal of Vegetation Science, 29, 276 – 284. https://doi.org/10.1111/jvs.12613; Umaña, M. N., Cao, M., Lin, L., Swenson, N., & Zhang, C. ( 2020 ). Data from: Trade‐offs in above and belowground biomass allocation influencing seedling growth in a tropical forest [Dataset]. Dryad Digital Repository, https://doi.org/10.5061/dryad.bk3j9kd93; Umaña, M. N., Zipkin, E. F., Zhang, C., Cao, M., Lin, L., & Swenson, N. G. ( 2019 ). Data from: Individual‐level trait variation and negative density dependence affects growth in tropical tree seedlings [Dataset]. Dryad Digital Repository, https://doi.org/10.5061/dryad.6d1qm1j; Worthy, S. J., Laughlin, D. C., Zambrano, J., Umaña, M. N., Zhang, C., Lin, L., Cao, M., & Swenson, N. G. ( 2020 ). Alternative designs and tropical tree seedling growth performance landscapes. Ecology, 101 ( 6 ), e03007. https://doi.org/10.1002/ecy.3007; Wright, S. J. ( 2019 ). Plant responses to nutrient addition experiments conducted in tropical forests. Ecological Monographs, 89 ( 4 ), 1 – 18. https://doi.org/10.1002/ecm.1382; Wright, S. J., Yavitt, J. B., Wurzburger, N., Turner, B. L., Tanner, E. V. J., Sayer, E. J., Santiago, L. S., Kaspari, M., Hedin, L. O., Harms, K. E., Garcia, M. N., & Corre, M. D. ( 2011 ). Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology, 92 ( 8 ), 1616 – 1625. https://doi.org/10.1890/10‐1558.1; Yang, J., Cao, M., & Swenson, N. G. ( 2018 ). Why functional traits do not predict tree demographic rates. Trends in Ecology & Evolution, 33 ( 5 ), 326 – 336. https://doi.org/10.1016/j.tree.2018.03.003; Yang, J., Song, X., Cao, M., Deng, X., Zhang, W., Yang, X., & Swenson, N. G. ( 2020 ). On the modelung of tropical tree growth: The importance of intraspecific trait variation, non‐linear functions and phenotypic integration. Annals of Botany, mcaa085. https://doi.org/10.1093/aob/mcaa085; Yavitt, J. B., Harms, K. E., Garcia, M. N., Wright, S. J., He, F., & Mirabello, M. J. ( 2009 ). Spatial heterogeneity of soil chemical properties in a lowland tropical moist forest, Panama. Australian Journal of Soil Research, 47 ( 7 ), 674 – 687. https://doi.org/10.1071/SR08258; Zalamea, P.‐C., Turner, B. L., Winter, K., Jones, F. A., Sarmiento, C., & Dalling, J. W. ( 2016 ). Seedling growth responses to phosphorus reflect adult distribution patterns of tropical trees. New Phytologist, 212 ( 2 ), 400 – 408. https://doi.org/10.1111/nph.14045; Zhang, Q., Zhang, L., Weiner, J., Tang, J., & Chen, X. ( 2011 ). Arbuscular mycorrhizal fungi alter plant allometry and biomassdensity relationships. Annals of Botany, 107 ( 3 ), 407 – 413. https://doi.org/10.1093/aob/mcq249; Condit, R., Engelbrecht, B. M. J., Pino, D., Perez, R., & Turner, B. L. ( 2013 ). Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proceedings of the National Academy of Sciences of the United States of America, 110 ( 13 ), 5064 – 5068. https://doi.org/10.1073/pnas.1218042110; Alvarez‐Clare, S., Mack, M. C., & Brooks, M. ( 2013 ). A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest. Ecology, 94 ( 7 ), 1540 – 1551. https://doi.org/10.1890/12‐2128.1; Andersen, K. M., Turner, B. L., & Dalling, J. W. ( 2014 ). Seedling performance trade‐offs influencing habitat filtering along a soil nutrient gradient in a tropical forest. Ecology, 95 ( 12 ), 3399 – 3413. https://doi.org/10.1890/13‐1688.1.sm; Arnold, S. J. ( 1983 ). Morphology, performance and fitness. American Zoology, 361 ( December 1981 ), 347 – 361.; Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. ( 2015 ). Fitting linear mixed‐effects models using lme4. Journal of Statistical Software, 67 ( 1 ), 1 – 48. https://doi.org/10.18637/jss.v067.i01; Bloom, A. J., Chapin, F. S., Mooney, H. A. ( 1985 ). Resource limitation in plants – An economic analogy. Annual Review of Ecology and Systematics, 16, 363 – 392. https://doi.org/10.1146/annurev.es.16.110185.002051; Brookshire, E. N. J., Gerber, S., Menge, D. N. L., & Hedin, L. O. ( 2012 ). Large losses of inorganic nitrogen from tropical rainforests suggest a lack of nitrogen limitation. Ecology Letters, 15 ( 1 ), 9 – 16. https://doi.org/10.1111/j.1461‐0248.2011.01701.x; Burslem, D. F. R. P., Grubb, P. J., & Turner, I. M. ( 1995 ). Responses to nutrient addition among shade‐tolerant tree seedlings of lowland tropical rain forest in Singapore. Journal of Ecology, 83 ( 1 ), 113 – 122. https://doi.org/10.2307/2261155; Cao, M., Zhu, H., Wang, H., Lan, G., Hu, Y., Zhou, S., Deng, X. B., & Cui, J. ( 2008 ). Xishuangbanna tropical seasonal rainforest dynamics plot: tree distribution maps, diameter tables and species documentation. In Yunnan Science and Technology Press (Vol. 1). Yunnan Science and Technology Press.; Cavelier, J. ( 1992 ). Fine‐root biomass and soil properties in a semideciduous and a lower montane rain forest in Panama. Plant and Soil, 142 ( 2 ), 187 – 201. https://doi.org/10.1007/BF00010965; Ceccon, E., Sánchez, S., & Campo, J. ( 2004 ). Tree seedling dynamics in two abandoned tropical dry forests of differing successional status in Yucatán, Mexico: A field experiment with N and P fertilization. Plant Ecology, 170 ( 2 ), 277 – 285. https://doi.org/10.1023/B:VEGE.0000021699.63151.47; Chapin, F. S., Bloom, A. J., Field, C. B., & Waring, R. H. ( 1987 ). Plant responses to multiple environmental factors. BioScience, 37 ( 1 ), 49 – 57. https://doi.org/10.2307/1310177; Chazdon, R. L., & Fetcher, N. ( 1984 ). Light environments of tropical forests. In E. Medina, H. A. Mooney, & C. Vázquez‐Yánes (Eds.), Physiological ecology of plants of the wet tropics (pp. 27 – 36 ). Springer.; Cleland, E. E., Lind, E. M., DeCrappeo, N. M., DeLorenze, E., Wilkins, R. A., Adler, P. B., Bakker, J. D., Brown, C. S., Davies, K. F., Esch, E., Firn, J., Gressard, S., Gruner, D. S., Hagenah, N., Harpole, W. S., Hautier, Y., Hobbie, S. E., Hofmockel, K. S., Kirkman, K., … Seabloom, E. W. ( 2019 ). Belowground biomass response to nutrient enrichment depends on light‐limitation across 2 globally distributed grasslands. Ecosystems, 22, 1466 – 1477.; Coleman, J. S., & McConnaughay, K. D. M. ( 1995 ). A non‐functional interpretation of a classical optimal‐partitioning example. Functional Ecology, 9 ( 6 ), 951 – 954.; Comas, L. H., Callahan, H. S., & Midford, P. E. ( 2014 ). Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: Implications for the evolution of belowground strategies. Ecology and Evolution, 4 ( 15 ), 2979 – 2990. https://doi.org/10.1002/ece3.1147; Craine, J. M., Lee, W. G., Bond, W. J., Williams, R. J., & Johnson, L. ( 2005 ). Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology, 86 ( 1 ), 12 – 19. https://doi.org/10.1890/04‐1075; Davidson, R. L. ( 1969 ). Effects of soil nutrients and moisture on root/shoot ratios in Lolium perenne L. and Trifolium repens L. Annals of Botany, 33 ( 3 ), 571 – 577. https://doi.org/10.1093/oxfordjournals.aob.a084309; Eziz, A., Yan, Z., Tian, D., Han, W., Tang, Z., & Fang, J. ( 2017 ). Drought effect on plant biomass allocation: A meta‐analysis. Ecology and Evolution, 7 ( 24 ), 11002 – 11010. https://doi.org/10.1002/ece3.3630; Fay, P. A., Prober, S. M., Harpole, W. S., Knops, J. M. H., Bakker, J. D., Borer, E. T., Lind, E. M., MacDougall, A. S., Seabloom, E. W., Wragg, P. D., Adler, P. B., Blumenthal, D. M., Buckley, Y. M., Chu, C., Cleland, E. E., Collins, S. L., Davies, K. F., Du, G., Feng, X., … Yang, L. H. ( 2015 ). Grassland productivity limited by multiple nutrients. Nature Plants, 1 ( 7 ), 1 – 5. https://doi.org/10.1038/nplants.2015.80; Field, C., & Mooney, H. A. ( 1983 ). Leaf age and seasonal effects on light, water, and nitrogen use efficiency in a California shrub. Oecologia, 56 ( 2 ), 348 – 355. https://doi.org/10.1007/BF00379711; Frazer, G. W., Canham, C. D., & Lertzman, K. P. ( 2000 ). Gap light analyzer (GLA), version 2.0. Technological tools. Retrieved from https://www.caryinstitute.org/science/our‐scientists/dr‐charles‐d‐canham/gap‐light‐analyzer‐gla; Garnier, E. ( 1991 ). Resource capture, biomass allocation and growth in herbaceous plants. Trends in Ecology & Evolution, 6 ( 4 ), 126 – 131. https://doi.org/10.1016/0169‐5347(91)90091‐B; Ghimire, B., Riley, W. J., Koven, C. D., Kattge, J., Rogers, A., Reich, P. B., & Wright, I. J. ( 2017 ). A global trait‐based approach to estimate leaf nitrogen functional allocation from observations. Ecological Applications, 27 ( 5 ), 1421 – 1434. https://doi.org/10.1002/eap.1542; Greenwood, S., Ruiz‐Benito, P., Martínez‐Vilalta, J., Lloret, F., Kitzberger, T., Allen, C. D., Fensham, R., Laughlin, D. C., Kattge, J., Bönisch, G., Kraft, N. J. B., & Jump, A. S. ( 2017 ). Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecology Letters, 20, 539 – 553. https://doi.org/10.1111/ele.12748; Grime, J. P. ( 1979 ). Plant strategies and vegetation processes (pp. 1 – 222 ). John Wiley and Sons.; Hui, D., & Jackson, R. B. ( 2006 ). Geographical and interannual variability in biomass partitioning in grassland ecosystems: A synthesis of field data. New Phytologist, 169 ( 1 ), 85 – 93. https://doi.org/10.1111/j.1469‐8137.2005.01569.x; Hulshof, C. M., & Swenson, N. G. ( 2010 ). Variation in leaf functional trait values within and across individuals and species: An example from a Costa Rican dry forest. Functional Ecology, 24 ( 1 ), 217 – 223. https://doi.org/10.1111/j.1365‐2435.2009.01614.x; Kaspari, M., Garcia, M. N., Harms, K. E., Santana, M., Wright, S. J., & Yavitt, J. B. ( 2008 ). Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecology Letters, 11 ( 1 ), 35 – 43. https://doi.org/10.1111/j.1461‐0248.2007.01124.x; Kitajima, K. ( 1994 ). Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia, 98 ( 3–4 ), 419 – 428. https://doi.org/10.1007/BF00324232; Kluber, L. A., Carrino‐Kyker, S. R., Coyle, K. P., DeForest, J. L., Hewins, C. R., Shaw, A. N., Smemo, K. A., & Burke, D. J. ( 2012 ). Mycorrhizal response to experimental pH and P manipulation in acidic hardwood forests. PLoS ONE, 7 ( 11 ), 1 – 10. https://doi.org/10.1371/journal.pone.0048946; Liu, X., Burslem, D. F. R. P., Taylor, J. D., Taylor, A. F. S., Khoo, E., Majalap‐Lee, N., Helgason, T., & Johnson, D. ( 2018 ). Partitioning of soil phosphorus among arbuscular and ectomycorrhizal trees in tropical and subtropical forests. Ecology Letters, 21 ( 5 ), 713 – 723. https://doi.org/10.1111/ele.12939; Lüdecke, D. ( 2018 ). sjstats: Statistical functions for regression models. R package version 0.14.1. Retrieved from https://CRAN.R‐project.org/package=sjstats; McCarthy, M. C., & Enquist, B. J. ( 2007 ). Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass. Functional Ecology, 21, 713 – 720. https://doi.org/10.1111/j.1365‐2435.2007.01276.x; McConnaughay, K. D. M., & Coleman, J. S. ( 1999 ). Biomass allocation in plants: Ontogeny or optimality? A test along tree resource gradients. Ecology, 80 ( 8 ), 2581 – 2593.; Messier, J., McGill, B. J., & Lechowicz, M. J. ( 2010 ). How do traits vary across ecological scales? A case for trait‐based ecology. Ecology Letters, 13 ( 7 ), 838 – 848. https://doi.org/10.1111/j.1461‐0248.2010.01476.x; Müller, I., Schmid, B., & Weiner, J. ( 2000 ). The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspectives in Plant Ecology, Evolution and Systematics, 3 ( 2 ), 115 – 127. https://doi.org/10.1078/1433‐8319‐00007; Nakagawa, S., & Schielzeth, H. ( 2013 ). A general and simple method for obtaining R2 from generalized linear mixed‐effects models. Methods in Ecology and Evolution, 4 ( 2 ), 133 – 142. https://doi.org/10.1111/j.2041‐210x.2012.00261.x; Violle, C., Navas, M.‐L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. ( 2007 ). Let the concept of trait be functional!. Oikos, 116 ( 5 ), 882 – 892. https://doi.org/10.1111/j.2007.0030‐1299.15559.x; O’Brien, M. J., Engelbrecht, B. M. J., Joswig, J., Pereyra, G., Schuldt, B., Jansen, S., Kattge, J., Landhäusser, S. M., Levick, S. R., Preisler, Y., Väänänen, P., & Macinnis‐Ng, C. ( 2017 ). A synthesis of tree functional traits related to drought‐induced mortality in forests across climatic zones. Journal of Applied Ecology, 54 ( 6 ), 1669 – 1686. https://doi.org/10.1111/1365‐2664.12874

  4. 4
  5. 5
  6. 6

    جغرافية الموضوع: end=2016-12-30

    وصف الملف: csv; pdf

    Relation: Boonman, C.C.F., Langevelde, F. van, Oliveras, I., Couedon, J., Luijken, N., Martini, D. & Veenendaal, E. (2019). On the importance of root traits in seedlings of tropical tree species. New Phytologist , 1-12. doi:10.1111/nph.16370; http://nbn-resolving.org/urn:nbn:nl:ui:13-5k-7a32; 653798; https://easy.dans.knaw.nl/ui/datasets/id/easy-dataset:161602

  7. 7
    Electronic Resource