-
1Academic Journal
المؤلفون: Xu Gaofeng, Shen Shicai, Zhang Fudou, Zhang Yun, Kato-Noguchi Hisashi, Roy Clements David
المصدر: Rice Science, Vol 25, Iss 1, Pp 32-41 (2018)
مصطلحات موضوعية: rice, allelopathy, environment change, functional trait, specific leaf area, stem mass fraction, temperature-light interaction, Plant culture, SB1-1110
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: Sabine Stuerz, Folkard Asch
المصدر: Plants; Volume 8; Issue 11; Pages: 521
مصطلحات موضوعية: growth chamber, leaf mass fraction, Oryza sativa, root mass fraction, specific leaf area, stem mass fraction
جغرافية الموضوع: agris
وصف الملف: application/pdf
Relation: https://dx.doi.org/10.3390/plants8110521
-
3Academic Journal
المؤلفون: Umaña, María Natalia, Cao, Min, Lin, Luxiang, Swenson, Nathan G., Zhang, Caicai
مصطلحات موضوعية: optimal partition theory, root mass fraction, seedlings, stem mass fraction, tropical forest, China, Xishuangbanna, leaf mass fraction, Ecology and Evolutionary Biology, Science
وصف الملف: application/pdf
Relation: Umaña, María Natalia; Cao, Min; Lin, Luxiang; Swenson, Nathan G.; Zhang, Caicai (2021). "Trade‐offs in above‐ and below‐ground biomass allocation influencing seedling growth in a tropical forest." Journal of Ecology (3): 1184-1193.; https://hdl.handle.net/2027.42/167112; Journal of Ecology; Qi, Y., Wei, W., Chen, C., & Chen, L. ( 2019 ). Plant root‐shoot biomass allocation over diverse biomes: A global synthesis. Global Ecology and Conservation, 18 ( 18 ), e00606. https://doi.org/10.1016/j.gecco.2019.e00606; Vitousek, P. M., & Sanford, R. L. ( 1986 ). Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics, 17 ( 1 ), 137 – 167. https://doi.org/10.1146/annurev.es.17.110186.001033; Peng, Y., & Yang, Y. ( 2016 ). Allometric biomass partitioning under nitrogen enrichment: Evidence from manipulative experiments around the world. Scientific Reports, 6 ( March ), 1 – 7. https://doi.org/10.1038/srep28918; Peters, R. ( 1983 ). The Ecological Implications of Body Size (Cambridge Studies in Ecology). Cambridge University Press. https://doi.org/10.1017/CBO9780511608551; Poorter, H., & Nagel, O. ( 2000 ). The role of biomass allocation in the growth response of plants to different levels of light, CO 2, nutrients and water: A quantitative review. Australian Journal of Plant Physiology, 27 ( 6 ), 595 – 607. https://doi.org/10.1071/PP991730310‐7841/00/121191; Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., & Mommer, L. ( 2012 ). Biomass allocation to leaves, stems and roots: Meta‐analyses of interspecific variation and environmental control. New Phytologist, 193 ( 1 ), 30 – 50. https://doi.org/10.1111/j.1469‐8137.2011.03952.x; Poorter, L. ( 1999 ). Growth responses of 15 rain‐forest tree species to a light gradient: The relative importance of morphological and physiological traits. Functional Ecology, 13 ( 3 ), 396 – 410. https://doi.org/10.1046/j.1365‐2435.1999.00332.x; Poorter, L. ( 2007 ). Are species adapted to their regeneration niche, adult niche, or both? The American Naturalist, 169 ( 4 ), 433 – 442. https://doi.org/10.1086/512045; Vitousek, P. M. ( 1984 ). Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology, 65 ( 1 ), 285 – 298. https://doi.org/10.2307/1939481; Reich, P. B., Ellsworth, D. S., & Walters, M. B. ( 1998 ). Leaf structure (specific leaf area) modulates photosynthesis‐nitrogen relations: Evidence from within and across species and functional groups. Functional Ecology, 12 ( 6 ), 948 – 958. https://doi.org/10.1046/j.1365‐2435.1998.00274.x; Santiago, L. S., De Guzman, M. E., Baraloto, C., Vogenberg, J. E., Brodie, M., Hérault, B., Fortunel, C., & Bonal, D. ( 2018 ). Coordination and trade‐offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytologist, 218 ( 3 ), 1015 – 1024. https://doi.org/10.1111/nph.15058; Santiago, L. S., Kitajima, K., Wright, S. J., & Mulkey, S. S. ( 2004 ). Coordinated changes in photosynthesis, water relations and leaf nutritional traits of canopy trees along a precipitation gradient in lowland tropical forest. Oecologia, 139 ( 4 ), 495 – 502. https://doi.org/10.1007/s00442‐004‐1542‐2; Santiago, L. S., Schuur, E. A. G., & Silvera, K. ( 2005 ). Nutrient cycling and plant‐soil feedbacks along a precipitation gradient in lowland Panama. Journal of Tropical Ecology, 21 ( 4 ), 461 – 470. https://doi.org/10.1017/S0266467405002464; Santiago, L. S., Wright, S. J., Harms, K. E., Yavitt, J. B., Korine, C., Garcia, M. N., & Turner, B. L. ( 2012 ). Tropical tree seedling growth responses to nitrogen, phosphorus and potassium addition. Journal of Ecology, 100 ( 2 ), 309 – 316. https://doi.org/10.1111/j.1365‐2745.2011.01904.x; Shipley, B., & Meziane, D. ( 2002 ). The balanced‐growth hypothesis and the allometry of leaf and root biomass allocation. Functional Ecology, 16 ( 3 ), 326 – 331. https://doi.org/10.1046/j.1365‐2435.2002.00626.x; Taylor, B. N., Strand, A. E., Cooper, E. R., Beidler, K. V., Schönholz, M., & Pritchard, S. G. ( 2014 ). Root length, biomass, tissue chemistry and mycorrhizal colonization following 14 years of CO 2 enrichment and 6 years of N fertilization in a warm temperate forest. Tree Physiology, 34 ( 9 ), 955 – 965. https://doi.org/10.1093/treephys/tpu058; Turner, B. L., Brenes‐arguedas, T., & Condit, R. ( 2018 ). Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature, 555, 367 – 370. https://doi.org/10.1038/nature25789; Turner, B. L., & Engelbrecht, B. M. J. ( 2011 ). Soil organic phosphorus in lowland tropical rain forests. Biogeochemistry, 103 ( 1 ), 297 – 315. https://doi.org/10.1007/s10533‐010‐9466‐x; Umaña, M. N., Zhang, C., Cao, M., Lin, L., & Swenson, N. G. ( 2015 ). Commonness, rarity, and intraspecific variation in traits and performance in tropical tree seedlings. Ecology Letters, 18 ( 12 ), 1329 – 1337. https://doi.org/10.1111/ele.12527; Umaña, M. N., Zhang, C., Cao, M., Lin, L., & Swenson, N. G. ( 2018 ). Quantifying the role of intra‐specific trait variation for allocation and organ‐level traits in tropical seedling communities. Journal of Vegetation Science, 29, 276 – 284. https://doi.org/10.1111/jvs.12613; Umaña, M. N., Cao, M., Lin, L., Swenson, N., & Zhang, C. ( 2020 ). Data from: Trade‐offs in above and belowground biomass allocation influencing seedling growth in a tropical forest [Dataset]. Dryad Digital Repository, https://doi.org/10.5061/dryad.bk3j9kd93; Umaña, M. N., Zipkin, E. F., Zhang, C., Cao, M., Lin, L., & Swenson, N. G. ( 2019 ). Data from: Individual‐level trait variation and negative density dependence affects growth in tropical tree seedlings [Dataset]. Dryad Digital Repository, https://doi.org/10.5061/dryad.6d1qm1j; Worthy, S. J., Laughlin, D. C., Zambrano, J., Umaña, M. N., Zhang, C., Lin, L., Cao, M., & Swenson, N. G. ( 2020 ). Alternative designs and tropical tree seedling growth performance landscapes. Ecology, 101 ( 6 ), e03007. https://doi.org/10.1002/ecy.3007; Wright, S. J. ( 2019 ). Plant responses to nutrient addition experiments conducted in tropical forests. Ecological Monographs, 89 ( 4 ), 1 – 18. https://doi.org/10.1002/ecm.1382; Wright, S. J., Yavitt, J. B., Wurzburger, N., Turner, B. L., Tanner, E. V. J., Sayer, E. J., Santiago, L. S., Kaspari, M., Hedin, L. O., Harms, K. E., Garcia, M. N., & Corre, M. D. ( 2011 ). Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology, 92 ( 8 ), 1616 – 1625. https://doi.org/10.1890/10‐1558.1; Yang, J., Cao, M., & Swenson, N. G. ( 2018 ). Why functional traits do not predict tree demographic rates. Trends in Ecology & Evolution, 33 ( 5 ), 326 – 336. https://doi.org/10.1016/j.tree.2018.03.003; Yang, J., Song, X., Cao, M., Deng, X., Zhang, W., Yang, X., & Swenson, N. G. ( 2020 ). On the modelung of tropical tree growth: The importance of intraspecific trait variation, non‐linear functions and phenotypic integration. Annals of Botany, mcaa085. https://doi.org/10.1093/aob/mcaa085; Yavitt, J. B., Harms, K. E., Garcia, M. N., Wright, S. J., He, F., & Mirabello, M. J. ( 2009 ). Spatial heterogeneity of soil chemical properties in a lowland tropical moist forest, Panama. Australian Journal of Soil Research, 47 ( 7 ), 674 – 687. https://doi.org/10.1071/SR08258; Zalamea, P.‐C., Turner, B. L., Winter, K., Jones, F. A., Sarmiento, C., & Dalling, J. W. ( 2016 ). Seedling growth responses to phosphorus reflect adult distribution patterns of tropical trees. New Phytologist, 212 ( 2 ), 400 – 408. https://doi.org/10.1111/nph.14045; Zhang, Q., Zhang, L., Weiner, J., Tang, J., & Chen, X. ( 2011 ). Arbuscular mycorrhizal fungi alter plant allometry and biomassdensity relationships. Annals of Botany, 107 ( 3 ), 407 – 413. https://doi.org/10.1093/aob/mcq249; Condit, R., Engelbrecht, B. M. J., Pino, D., Perez, R., & Turner, B. L. ( 2013 ). Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proceedings of the National Academy of Sciences of the United States of America, 110 ( 13 ), 5064 – 5068. https://doi.org/10.1073/pnas.1218042110; Alvarez‐Clare, S., Mack, M. C., & Brooks, M. ( 2013 ). A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest. Ecology, 94 ( 7 ), 1540 – 1551. https://doi.org/10.1890/12‐2128.1; Andersen, K. M., Turner, B. L., & Dalling, J. W. ( 2014 ). Seedling performance trade‐offs influencing habitat filtering along a soil nutrient gradient in a tropical forest. Ecology, 95 ( 12 ), 3399 – 3413. https://doi.org/10.1890/13‐1688.1.sm; Arnold, S. J. ( 1983 ). Morphology, performance and fitness. American Zoology, 361 ( December 1981 ), 347 – 361.; Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. ( 2015 ). Fitting linear mixed‐effects models using lme4. Journal of Statistical Software, 67 ( 1 ), 1 – 48. https://doi.org/10.18637/jss.v067.i01; Bloom, A. J., Chapin, F. S., Mooney, H. A. ( 1985 ). Resource limitation in plants – An economic analogy. Annual Review of Ecology and Systematics, 16, 363 – 392. https://doi.org/10.1146/annurev.es.16.110185.002051; Brookshire, E. N. J., Gerber, S., Menge, D. N. L., & Hedin, L. O. ( 2012 ). Large losses of inorganic nitrogen from tropical rainforests suggest a lack of nitrogen limitation. Ecology Letters, 15 ( 1 ), 9 – 16. https://doi.org/10.1111/j.1461‐0248.2011.01701.x; Burslem, D. F. R. P., Grubb, P. J., & Turner, I. M. ( 1995 ). Responses to nutrient addition among shade‐tolerant tree seedlings of lowland tropical rain forest in Singapore. Journal of Ecology, 83 ( 1 ), 113 – 122. https://doi.org/10.2307/2261155; Cao, M., Zhu, H., Wang, H., Lan, G., Hu, Y., Zhou, S., Deng, X. B., & Cui, J. ( 2008 ). Xishuangbanna tropical seasonal rainforest dynamics plot: tree distribution maps, diameter tables and species documentation. In Yunnan Science and Technology Press (Vol. 1). Yunnan Science and Technology Press.; Cavelier, J. ( 1992 ). Fine‐root biomass and soil properties in a semideciduous and a lower montane rain forest in Panama. Plant and Soil, 142 ( 2 ), 187 – 201. https://doi.org/10.1007/BF00010965; Ceccon, E., Sánchez, S., & Campo, J. ( 2004 ). Tree seedling dynamics in two abandoned tropical dry forests of differing successional status in Yucatán, Mexico: A field experiment with N and P fertilization. Plant Ecology, 170 ( 2 ), 277 – 285. https://doi.org/10.1023/B:VEGE.0000021699.63151.47; Chapin, F. S., Bloom, A. J., Field, C. B., & Waring, R. H. ( 1987 ). Plant responses to multiple environmental factors. BioScience, 37 ( 1 ), 49 – 57. https://doi.org/10.2307/1310177; Chazdon, R. L., & Fetcher, N. ( 1984 ). Light environments of tropical forests. In E. Medina, H. A. Mooney, & C. Vázquez‐Yánes (Eds.), Physiological ecology of plants of the wet tropics (pp. 27 – 36 ). Springer.; Cleland, E. E., Lind, E. M., DeCrappeo, N. M., DeLorenze, E., Wilkins, R. A., Adler, P. B., Bakker, J. D., Brown, C. S., Davies, K. F., Esch, E., Firn, J., Gressard, S., Gruner, D. S., Hagenah, N., Harpole, W. S., Hautier, Y., Hobbie, S. E., Hofmockel, K. S., Kirkman, K., … Seabloom, E. W. ( 2019 ). Belowground biomass response to nutrient enrichment depends on light‐limitation across 2 globally distributed grasslands. Ecosystems, 22, 1466 – 1477.; Coleman, J. S., & McConnaughay, K. D. M. ( 1995 ). A non‐functional interpretation of a classical optimal‐partitioning example. Functional Ecology, 9 ( 6 ), 951 – 954.; Comas, L. H., Callahan, H. S., & Midford, P. E. ( 2014 ). Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: Implications for the evolution of belowground strategies. Ecology and Evolution, 4 ( 15 ), 2979 – 2990. https://doi.org/10.1002/ece3.1147; Craine, J. M., Lee, W. G., Bond, W. J., Williams, R. J., & Johnson, L. ( 2005 ). Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology, 86 ( 1 ), 12 – 19. https://doi.org/10.1890/04‐1075; Davidson, R. L. ( 1969 ). Effects of soil nutrients and moisture on root/shoot ratios in Lolium perenne L. and Trifolium repens L. Annals of Botany, 33 ( 3 ), 571 – 577. https://doi.org/10.1093/oxfordjournals.aob.a084309; Eziz, A., Yan, Z., Tian, D., Han, W., Tang, Z., & Fang, J. ( 2017 ). Drought effect on plant biomass allocation: A meta‐analysis. Ecology and Evolution, 7 ( 24 ), 11002 – 11010. https://doi.org/10.1002/ece3.3630; Fay, P. A., Prober, S. M., Harpole, W. S., Knops, J. M. H., Bakker, J. D., Borer, E. T., Lind, E. M., MacDougall, A. S., Seabloom, E. W., Wragg, P. D., Adler, P. B., Blumenthal, D. M., Buckley, Y. M., Chu, C., Cleland, E. E., Collins, S. L., Davies, K. F., Du, G., Feng, X., … Yang, L. H. ( 2015 ). Grassland productivity limited by multiple nutrients. Nature Plants, 1 ( 7 ), 1 – 5. https://doi.org/10.1038/nplants.2015.80; Field, C., & Mooney, H. A. ( 1983 ). Leaf age and seasonal effects on light, water, and nitrogen use efficiency in a California shrub. Oecologia, 56 ( 2 ), 348 – 355. https://doi.org/10.1007/BF00379711; Frazer, G. W., Canham, C. D., & Lertzman, K. P. ( 2000 ). Gap light analyzer (GLA), version 2.0. Technological tools. Retrieved from https://www.caryinstitute.org/science/our‐scientists/dr‐charles‐d‐canham/gap‐light‐analyzer‐gla; Garnier, E. ( 1991 ). Resource capture, biomass allocation and growth in herbaceous plants. Trends in Ecology & Evolution, 6 ( 4 ), 126 – 131. https://doi.org/10.1016/0169‐5347(91)90091‐B; Ghimire, B., Riley, W. J., Koven, C. D., Kattge, J., Rogers, A., Reich, P. B., & Wright, I. J. ( 2017 ). A global trait‐based approach to estimate leaf nitrogen functional allocation from observations. Ecological Applications, 27 ( 5 ), 1421 – 1434. https://doi.org/10.1002/eap.1542; Greenwood, S., Ruiz‐Benito, P., Martínez‐Vilalta, J., Lloret, F., Kitzberger, T., Allen, C. D., Fensham, R., Laughlin, D. C., Kattge, J., Bönisch, G., Kraft, N. J. B., & Jump, A. S. ( 2017 ). Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecology Letters, 20, 539 – 553. https://doi.org/10.1111/ele.12748; Grime, J. P. ( 1979 ). Plant strategies and vegetation processes (pp. 1 – 222 ). John Wiley and Sons.; Hui, D., & Jackson, R. B. ( 2006 ). Geographical and interannual variability in biomass partitioning in grassland ecosystems: A synthesis of field data. New Phytologist, 169 ( 1 ), 85 – 93. https://doi.org/10.1111/j.1469‐8137.2005.01569.x; Hulshof, C. M., & Swenson, N. G. ( 2010 ). Variation in leaf functional trait values within and across individuals and species: An example from a Costa Rican dry forest. Functional Ecology, 24 ( 1 ), 217 – 223. https://doi.org/10.1111/j.1365‐2435.2009.01614.x; Kaspari, M., Garcia, M. N., Harms, K. E., Santana, M., Wright, S. J., & Yavitt, J. B. ( 2008 ). Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecology Letters, 11 ( 1 ), 35 – 43. https://doi.org/10.1111/j.1461‐0248.2007.01124.x; Kitajima, K. ( 1994 ). Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia, 98 ( 3–4 ), 419 – 428. https://doi.org/10.1007/BF00324232; Kluber, L. A., Carrino‐Kyker, S. R., Coyle, K. P., DeForest, J. L., Hewins, C. R., Shaw, A. N., Smemo, K. A., & Burke, D. J. ( 2012 ). Mycorrhizal response to experimental pH and P manipulation in acidic hardwood forests. PLoS ONE, 7 ( 11 ), 1 – 10. https://doi.org/10.1371/journal.pone.0048946; Liu, X., Burslem, D. F. R. P., Taylor, J. D., Taylor, A. F. S., Khoo, E., Majalap‐Lee, N., Helgason, T., & Johnson, D. ( 2018 ). Partitioning of soil phosphorus among arbuscular and ectomycorrhizal trees in tropical and subtropical forests. Ecology Letters, 21 ( 5 ), 713 – 723. https://doi.org/10.1111/ele.12939; Lüdecke, D. ( 2018 ). sjstats: Statistical functions for regression models. R package version 0.14.1. Retrieved from https://CRAN.R‐project.org/package=sjstats; McCarthy, M. C., & Enquist, B. J. ( 2007 ). Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass. Functional Ecology, 21, 713 – 720. https://doi.org/10.1111/j.1365‐2435.2007.01276.x; McConnaughay, K. D. M., & Coleman, J. S. ( 1999 ). Biomass allocation in plants: Ontogeny or optimality? A test along tree resource gradients. Ecology, 80 ( 8 ), 2581 – 2593.; Messier, J., McGill, B. J., & Lechowicz, M. J. ( 2010 ). How do traits vary across ecological scales? A case for trait‐based ecology. Ecology Letters, 13 ( 7 ), 838 – 848. https://doi.org/10.1111/j.1461‐0248.2010.01476.x; Müller, I., Schmid, B., & Weiner, J. ( 2000 ). The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspectives in Plant Ecology, Evolution and Systematics, 3 ( 2 ), 115 – 127. https://doi.org/10.1078/1433‐8319‐00007; Nakagawa, S., & Schielzeth, H. ( 2013 ). A general and simple method for obtaining R2 from generalized linear mixed‐effects models. Methods in Ecology and Evolution, 4 ( 2 ), 133 – 142. https://doi.org/10.1111/j.2041‐210x.2012.00261.x; Violle, C., Navas, M.‐L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. ( 2007 ). Let the concept of trait be functional!. Oikos, 116 ( 5 ), 882 – 892. https://doi.org/10.1111/j.2007.0030‐1299.15559.x; O’Brien, M. J., Engelbrecht, B. M. J., Joswig, J., Pereyra, G., Schuldt, B., Jansen, S., Kattge, J., Landhäusser, S. M., Levick, S. R., Preisler, Y., Väänänen, P., & Macinnis‐Ng, C. ( 2017 ). A synthesis of tree functional traits related to drought‐induced mortality in forests across climatic zones. Journal of Applied Ecology, 54 ( 6 ), 1669 – 1686. https://doi.org/10.1111/1365‐2664.12874
-
4
مصطلحات موضوعية: mean rooting depth, african species, leaf area ratio, tree seedling, Plant Ecology and Nature Conservation, PE&RC, leaf mass fraction, plant weight, specific root length, root mass fraction, leaf size, starch concentration, Plantenecologie en Natuurbeheer, stem mass fraction, specific leaf area
-
5
المؤلفون: Umaña, Maria Natalia, Cao, Min, Lin, Luxiang, Swenson, Nathan, Zhang, Caicai
مصطلحات موضوعية: China, leaf mass fraction, seedlings, stem mass fraction, root mass fraction, Xishuangbanna, optimal allocation theory
Relation: https://zenodo.org/communities/dryad; https://doi.org/10.5061/dryad.bk3j9kd93; oai:zenodo.org:4116349
-
6
مصطلحات موضوعية: Biology, tree seedling, african species, starch concentration, specific root length, mean rooting depth, root mass fraction, leaf area ratio, specific leaf area, leaf size, stem mass fraction, leaf mass fraction, plant weight
Subject Person: Collection period: start=2016-06-01
جغرافية الموضوع: end=2016-12-30
وصف الملف: csv; pdf
Relation: Boonman, C.C.F., Langevelde, F. van, Oliveras, I., Couedon, J., Luijken, N., Martini, D. & Veenendaal, E. (2019). On the importance of root traits in seedlings of tropical tree species. New Phytologist , 1-12. doi:10.1111/nph.16370; http://nbn-resolving.org/urn:nbn:nl:ui:13-5k-7a32; 653798; https://easy.dans.knaw.nl/ui/datasets/id/easy-dataset:161602
-
7Electronic Resource