يعرض 1 - 20 نتائج من 381 نتيجة بحث عن '"spectrophotometric titration"', وقت الاستعلام: 0.79s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Proceedings of the National Academy of Sciences of Belarus, Chemical Series; Том 60, № 3 (2024); 235-245 ; Известия Национальной академии наук Беларуси. Серия химических наук; Том 60, № 3 (2024); 235-245 ; 2524-2342 ; 1561-8331 ; 10.29235/1561-8331-2024-60-3

    وصف الملف: application/pdf

    Relation: https://vestichem.belnauka.by/jour/article/view/899/750; Global Tuberculosis Report, 2022 / World Health Organization. – Geneva: World Health organization, 2022. – 68 p.; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence / S. T. Cole [et al.] // Nature. – 1998. – Vol. 393, № 6685. – P. 537–544. https://doi.org/10.1038/31159; CYP51-like gene of Mycobacterium tuberculosis actually encodes a P450 similar to eukaryotic CYP51 / Y. Aoyama [et al.] // J. Biochem. – 1998. – Vol. 124, № 4. – P. 694–696. https://doi.org/10.1093/oxfordjournals.jbchem.a022167; Characterization and catalytic properties of the sterol 14alpha-demethylase from Mycobacterium tuberculosis / A. Bellamine [et al.] // Proc. Natl. Acad. Sci. USA. – 1999. – Vol. 96, № 16. – P. 8937–8942. https://doi.org/10.1073/pnas.96.16.8937; Strushkevich, N. Structural basis of human CYP51 inhibition by antifungal azoles / N. Strushkevich, S.A. Usanov, H.-W. Park // J. Mol. Biol. – 2010. – Vol. 397, № 4. – P. 1067–1078. https://doi.org/10.1016/j.jmb.2010.01.075; Lamb, D. C. The first virally encoded cytochrome p450 / D.C. Lamb [et al.] // J. Virol. – 2009. – Vol. 83, № 16. – P. 8266–8269. https://doi.org/10.1128/JVI.00289-09; Comprehensive essentiality analysis of the Mycobacterium tuberculosis genome via saturating transposon mutagenesis / M. A. DeJesus [et al.] // mBio. – 2017. – Vol. 8, № 1. – P. 1–17. https://doi.org/10.1128/mBio.02133-16; Transcriptional adaptation of drug-tolerant Mycobacterium tuberculosis in mice [Electronic Resource] / E. A. Wynn [et al.] // bioRxiv [Preprint]. – 2023, March 08. – Mode of access: https://www.biorxiv.org/content/10.1101/2023.03.06.531356v2. https://doi.org/10.1101/2023.03.06.531356; Structural insights into 3Fe–4S ferredoxins diversity in M. tuberculosis highlighted by a first redox complex with P450 / A. Gilep [et al.] // Front. Mol. Biosci. – 2023. – Vol. 9. – P. 1–15. https://doi.org/10.3389/fmolb.2022.1100032; X-ray structure of 4, 4′-dihydroxybenzophenone mimicking sterol substrate in the active site of sterol 14α-demethylase (CYP51) / A. N. Eddine [et al.] // J. Biol. Chem. – 2008. – Vol. 283, № 22. – P. 15152–15159. https://doi.org/10.1074/jbc.M801145200; Estriol bound and ligand-free structures of sterol 14alpha-demethylase / L. M. Podust [et al.] // Structure. – 2004. – Vol. 12, № 11. – P. 1937–1945. https://doi.org/10.1016/j.str.2004.08.009; Human lanosterol 14-alpha demethylase (CYP51A1) Is a putative target for natural flavonoid luteolin 7, 3′-disulfate / L. Kaluzhskiy [et al.] // Molecules. – 2021. – Vol. 26, № 8. – P. 2237. https://doi.org/10.3390/molecules26082237; CYP51 from Trypanosoma brucei is obtusifoliol-specific / G. I. Lepesheva [et al.] // Biochemistry. – 2004. – Vol. 43, № 33. – P. 10789–10799. https://doi.org/10.1021/bi048967t; Schenkman, J. B. Spectral analyses of cytochromes P450 / J. B. Schenkman, I. Jansson // Methods Mol. Biol. – 2006. – Vol. 320. – P. 11–18. https://doi.org/10.1385/1-59259-998-2:11; The structure of Mycobacterium tuberculosis CYP125: molecular basis for cholesterol binding in a P450 needed for host infection / K. J. McLean [et al.] // J. Biol. Chem. – 2009. – Vol. 284, № 51. – P. 35524–35533. https://doi.org/10.1074/jbc.M109.032706; Biosynthetic studies of marine lipids. 42. Biosynthesis of steroid and triterpenoid metabolites in the sea cucumber Eupentacta fraudatrix / T. N. Makarieva [et al.] // Steroids. – 1993. – Vol. 58, N 11. – P. 508–517. https://doi.org/10.1016/0039-128x(93)90026-j; Cyclic steroid glycosides from the starfish Echinaster luzonicus: Structures and immunomodulatory activities / A. A. Kicha [et al.] // J. Nat. Prod. – 2015. – Vol. 78, N 6. – P. 1397–1405. https://doi.org/10.1021/acs.jnatprod.5b00332; Six new polyhydroxysteroidal glycosides, anthenosides S1–S6, from the starfish Anthenea sibogae / A. A. Kicha [et al.] // Chem. Biodiver. – 2018. – Vol. 15, № 3. – P. 1–12. https://doi.org/10.1002/cbdv.201700553; Unusual polyhydroxylated steroids from the starfish Anthenoides laevigatus, collected of the coastal waters of Vietnam / A. A. Kicha [et al.] // Molecules. – 2020. – Vol. 25, № 6. – P. 1–12. https://doi.org/10.3390/molecules25061440; Granulatosides D, E and other polar steroid compounds from the starfish Choriaster granulatus. Their immunomodulatory activity and cytotoxicity / N. V. Ivanchina [et al.] // Nat. Prod. Res. – 2019. – Vol. 33, № 18. – P. 2623–2630. https://doi.org/10.1080/14786419.2018.1463223; Highly hydroxylated steroids of the starfish Archaster typicus from the Vietnamese waters / N. V. Ivanchina [et al.] // Steroids. – 2010. – Vol. 75, № 12. – P. 897–904. https://doi.org/10.1016/j.steroids.2010.05.012; Tabakmakher, K. M. New trisulfated steroids from the Vietnamese marine sponge Halichondria vansoesti and their PSA expression and glucose uptake inhibitory activities / K. M. Tabakmakher [et al.] // Mar. Drugs. – 2019. – Vol. 17, № 8. – P. 445. https://doi.org/10.3390/md17080445; Biosensor‐surface plasmon resonance methods for quantitative analysis of biomolecular interactions / F. A. Tanious [et al.] // Methods Cell Biol. – 2008. – Vol. 84. – P. 53–77. https://doi.org/10.1016/S0091-679X(07)84003-9; Lipschultz, C. A. Experimental design for analysis of complex kinetics using surface plasmon resonance / C. A. Lipschultz, Y. Li, S. Smith-Gill // Methods. – 2000. – Vol. 20, № 3. – P. 310–318. https://doi.org/10.1006/meth.1999.0924; Schenkman, J. B. Substrate interaction with cytochrome P-450 / J. B. Schenkman, S. G. Sligar, D. L. Cinti // Pharmacol. Ther. – 1981. – Vol. 12, № 1. – P. 43–71. https://doi.org/10.1016/0163-7258(81)90075-9; Podust, L. M. Crystal structure of cytochrome P450 14α-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors / L. M. Podust, T. L. Poulos, M. R. Waterman // Proc. Natl. Acad. Sci. USA. – 2001. – Vol. 98, № 6. – P. 3068–3073. https://doi.org/10.1073/pnas.061562898; Metabolic fate of human immunoactive sterols in Mycobacterium tuberculosis / T. Varaksa [et al.] // J. Mol. Biol. – 2021. – Vol. 433, № 4. – P. 1–16. https://doi.org/10.1016/j.jmb.2020.166763; Identification of Mycobacterium tuberculosis enzyme involved in vitamin D and 7-dehydrocholesterol metabolism / A. V. Vasilevskaya [et al.] // J. Steroid Biochem. Mol. Biol. – 2017. – Vol. 169. – P. 202–209. https://doi.org/10.1016/j.jsbmb.2016.05.021; https://vestichem.belnauka.by/jour/article/view/899

  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
  9. 9
    Academic Journal
  10. 10
    Academic Journal

    المساهمون: This work was supported by the Belarussian Foundation for Basic Research (grant no. Х16Р-062). Authors acknowledge Ya. V. Dichenko for assistance in carrying out in silico experiments., Работа выполнялась при поддержке БРРФИ (грант Х16Р-062). Коллектив авто- ров выражает благодарность старшему научному сотруднику лаборатории белковой инженерии Я. В. Диченко за помощь в постановке in silico экспериментов.

    المصدر: Doklady of the National Academy of Sciences of Belarus; Том 62, № 1 (2018); 51-65 ; Доклады Национальной академии наук Беларуси; Том 62, № 1 (2018); 51-65 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2018-62-1

    وصف الملف: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/489/491; Ullrich, V. Prostacyclin and thromboxane synthase as P-450 enzymes / V. Ullrich, H. Graf // Trends Pharmacol. Sci. – 1984. – Vol. 5 – P. 352–355. doi.org/10.1016/0165-6147(84)90467-x; Ullrich, V. Thromboxane synthase. From isolation to function / V. Ullrich, R. Nüsing // Stroke. – 1990. – Vol. 21, N 12, Suppl. IV – P. 134–138.; Localization of thromboxane synthase in human tissues by monoclonal antibody Tü 300 / R. Nüsing [et al.] // Virchows Arch. A. Pathol. Anat. Histopathol. – 1992. – Vol. 421, N 3 – P. 249–254. doi.org/10.1007/bf01611182; Пептидный фаговый дисплей в скрининге пептидомиметиков тромбоксан синтазы / Д. О. Дормешкин [и др.] // Докл. Нац. акад. наук Беларуси. – 2015. – Т. 59, № 2. – С. 53–60.; Locuson, C. W. Visible Spectra of Type II Cytochrome P450-Drug Complexes: Evidence that “Incomplete” Heme Coordination Is Common / C. W. Locuson, J. M. Hutzler, T. S. Tracy // Drug Metab. Dispos. – 2007. – Vol. 35, N 4. – P. 614– 622. doi.org/10.1124/dmd.106.012609; Enzymatic Oxygen Scavenging for Photostability without pH Drop in Single-Molecule Experiments / M. Swoboda [et al.] // ACS Nano. – 2012. – Vol. 6, N 7. – P. 6364–6369. doi.org/10.1021/nn301895c; The I-TASSER Suite: protein structure and function prediction / J. Yang [et al.] // Nat. Methods. – 2014. – Vol. 12, N 1. – P. 7–8. doi.org/10.1038/nmeth.3213; PROCHECK: a program to check the stereochemical quality of protein structures / R. A. Laskowski [et al.] // J. Appl. Crystallogr. – 1993. – Vol. 26, N 2. – P. 283–291. doi.org/10.1107/s0021889892009944; Modeling of protein-peptide interactions using the CABS-dock web server for binding site search and flexible docking / M. Blaszczyk [et al.] // Methods. – 2016. – Vol. 93. – P. 72–83. doi.org/10.1016/j.ymeth.2015.07.004; Functional Investigations of Thromboxane Synthase (CYP5A1) in Lipid Bilayers of Nanodiscs / A. Das [et al.] // ChemBioChem. – 2014. – Vol. 15, N 6. – P. 892–899. doi.org/10.1002/cbic.201300646; Identification of thromboxane A2 synthase active site residues by molecular modeling-guided site-directed mutagenesis / L. H. Wang [et al.] // J. Biol. Chem. – 1996. – Vol. 271, N 33. – P. 19970–19975. doi.org/10.1074/jbc.271.33.19970; Hsu, P.-Y. Identification of Thromboxane Synthase Amino Acid Residues Involved in Heme-Propionate Binding / P.-Y. Hsu, A.-L. Tsai, L.-H. Wang // Arch. Biochem. Biophys. – 2000. – Vol. 383, N 1. – P. 119–127. doi.org/10.1006/abbi.2000.2041; Edson, K. Z. CYP4 enzymes as potential drug targets: focus on enzyme multiplicity, inducers and inhibitors, and therapeutic modulation of 20-hydroxyeicosatetraenoic acid (20-HETE) synthase and fatty acid ω-hydroxylase activities / K. Z. Edson, A. E. Rettie // Curr. Top. Med. Chem. – 2013. – Vol. 13, N 12. – P. 1429–1440. doi.org/10.2174/15680266113139990110; Products, Kinetics, and Substrate Specificity of Homogeneous Thromboxane Synthase from Human Platelets: Development of a Novel Enzyme Assay / M. Hecker [et al.] // Arch. Biochem. Biophys. – 1987. – Vol. 254, N 1. – P. 124–135. doi.org/10.1016/0003-9861(87)90088-9; Uchida, Y. Effects of thromboxane synthetase inhibitors on cyclical reduction of coronary blood flow in dogs / Y. Uchida, S. Murao // Jpn. Heart J. – 1981. – Vol. 22, N 6. – P. 971–975. doi.org/10.1536/ihj.22.971; Effect of cytochrome P-450 inhibitors econazole, bifonazole and clotrimazole on prostanoid formation / H. C. Köfeler [et al.] // Br. J. Pharmacol. – 2000. – Vol. 130, N 6. – P. 1241–1246. doi.org/10.1038/sj.bjp.0703427; New Progress in Azole Compounds as Antimicrobial Agents / H.-Z. Zhang [et al.] // Mini Rev. Med. Chem. – 2017. – Vol. 17, N 2. – P. 122–166. doi.org/10.2174/1389557516666160630120725; Prochloraz: an imidazole fungicide with multiple mechanisms of action / A. M. Vinggaard [et al.] // Int. J. Androl. – 2006. – Vol. 29, N 1. – P. 186–192. doi.org/10.1111/j.1365-2605.2005.00604.x; Robitaille, C. N. Antiandrogenic Mechanisms of Pesticides in Human LNCaP Prostate and H295R Adrenocortical Carcinoma Cells / C. N. Robitaille, P. Rivest, J. T. Sanderson // Toxicol. Sci. – 2015. – Vol. 143, N 1. – P. 126–135. doi. org/10.1093/toxsci/kfu212; Induction and inhibition of aromatase (CYP19) activity by various classes of pesticides in H295R human adrenocortical carcinoma cells / J. T. Sanderson [et al.] // Toxicol. Appl. Pharmacol. – 2002. – Vol. 182, N 1. – P. 44–54. doi. org/10.1006/taap.2002.9420; https://doklady.belnauka.by/jour/article/view/489

  11. 11
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal

    المصدر: Doklady of the National Academy of Sciences of Belarus; Том 61, № 5 (2017); 66-79 ; Доклады Национальной академии наук Беларуси; Том 61, № 5 (2017); 66-79 ; 2524-2431 ; 1561-8323 ; undefined

    وصف الملف: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/459/460; Hrycay, E. G. Monooxygenase, Peroxidase and Peroxygenase Properties and Mechanisms of Cytochrome P450 / E. G. Hrycay, S. M. Bandiera // Advances in Experimental Medicine and Biology. – 2015. – Vol. 851. – 368 p. doi. org/10.1007/978-3-319-16009-2; Isin, E. M. Substrate binding to cytochromes P450 / E. M. Isin, F. P. Guengerich // Analytical and bioanalytical chemistry. – 2008. – Vol. 392, N 6. – P. 1019–1030. doi.org/10.1007/s00216-008-2244-0; Aguirre, C. Overview of Probing Protein-Ligand Interactions Using NMR / C. Aguirre, O. Cala, I. Krimm // Current Protocols in Protein Science. – 2015. – P. 17.18.1–17.18.24. doi.org/10.1002/0471140864.ps1718s81; Cala, O. NMR-based analysis of protein–ligand interactions / O. Cala, F. Guillière, I. Krimm // Analytical and bioanalytical chemistry. – 2014. – Vol. 406, N 4. – P. 943–956. doi.org/10.1007/s00216-013-6931-0; Mayer, M. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor / M. Mayer, B. Meyer // Journal of the American Chemical Society. – 2001. – Vol. 123, N 25. – P. 6108–6117. doi.org/10.1021/ja0100120; Angulo, J. STD-NMR: application to transient interactions between biomolecules – a quantitative approach / J. Angulo, P. M. Nieto // European Biophysics Journal. – 2011. – Vol. 40, N 12. – P. 1357–1369. doi.org/10.1007/s00249-011-0749-5; Direct observation of ligand binding to membrane proteins in living cells by a saturation transfer double difference (STDD) NMR spectroscopy method shows a significantly higher affinity of integrin αIIbβ3 in native platelets than in liposomes / B. Claasen [et al.] // Journal of the American Chemical Society. – 2005. – Vol. 127, N 3. – P. 916–919. doi. org/10.1021/ja044434w; Direct detection of ligand binding to Sepharose-immobilised protein using saturation transfer double difference (STDD) NMR spectroscopy / T. Haselhorst [et al.] // Biochemical and biophysical research communications. – 2007. – Vol. 359, N 4. – P. 866–870. doi.org/10.1016/j.bbrc.2007.05.204; Jayalakshmi, V. Complete relaxation and conformational exchange matrix (CORCEMA) analysis of intermolecular saturation transfer effects in reversibly forming ligand-receptor complexes / V. Jayalakshmi, N. R. Krishna // Journal of Magnetic Resonance. – 2002. – Vol. 155, N 1. – P. 106–118. doi.org/10.1006/jmre.2001.2499; Godamudunage, M. P. Comparison of Cytochrome P450 3A4 and 3A7 with Azole Inhibitors / M. P. Godamudunage, J. N. Lampe, E. E. Scott // FASEB Journal. – 2017. – Vol. 31, N 1. – P. 669.5.; Sevrioukova, I. F. Structural biology of redox partner interactions in P450cam monooxygenase: a fresh look at an old system / I. F. Sevrioukova, T. L. Poulos // Archives of biochemistry and biophysics. – 2011. – Vol. 507, N 1. – P. 66–74. doi. org/10.1016/j.abb.2010.08.022; Mueller, E. J. Twenty-five years of P450cam research / E. J. Mueller, P. J. Loida, S. G. Sligar // Cytochrome P450. – Springer US, 1995. – P. 83–124. doi.org/10.1007/978-1-4757-2391-5_3; The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450 / T. L. Poulos [et al.] // Journal of Biological Chemistry. – 1985. – Vol. 260, N 30. – P. 16122–16130.; Conformational states of cytochrome P450cam revealed by trapping of synthetic molecular wires / A. M. A. Hays [et al.] // Journal of molecular biology. – 2004. – Vol. 344, N 2. – P. 455–469. doi.org/10.1016/j.jmb.2004.09.046; Three clusters of conformational states in p450cam reveal a multistep pathway for closing of the substrate access channel / Y. T. Lee [et al.] // Biochemistry. – 2011. – Vol. 50, N 5. – P. 693–703. doi.org/10.1021/bi101726d; Poulos, T. L. Crystal structures of metyrapone- and phenylimidazole-inhibited complexes of cytochrome P-450cam / T. L. Poulos, A. J. Howard // Biochemistry. – 1987. – Vol. 26, N 25. – P. 8165–8174. doi.org/10.1021/bi00399a022; Lipscomb, J. D. Structural aspects of the active site of cytochrome P-450cam / J. D. Lipscomb, I. C. Gunsalus // Drug Metabolism and Disposition. – 1973. – Vol. 1, N 1. – P. 1–5.; Saturation Transfer Difference (STD) NMR Spectroscopy Characterization of Dual Binding Mode of a Mannose Disaccharide to DC-SIGN / J. Angulo [et al.] // ChemBioChem. – 2008. – Vol. 9, N 14. – P. 2225–2227. doi.org/10.1002/ cbic.200800361; Prasad, S. Binding of camphor to Pseudomonas putida cytochrome P450cam: steady-state and picosecond timeresolved fluorescence studies / S. Prasad, S. Mazumdar, S. Mitra // FEBS letters. – 2000. – Vol. 477, N 3. – P. 157–160. doi. org/10.1016/s0014-5793(00)01745-2; Crystal structure of the cytochrome P-450CAM active site mutant Thr252Ala / R. Raag [et al.] // Biochemistry. – 1991. – Vol. 30, N 48. – P. 11420–11429. doi.org/10.1021/bi00112a008; Surface plasmon resonance analysis of antifungal azoles binding to CYP3A4 with kinetic resolution of multiple binding orientations / J. T. Pearson [et al.] // Biochemistry. – 2006. – Vol. 45, N 20. – P. 6341–6353. doi.org/10.1021/bi0600042; Fernando, H. Resolution of Multiple Substrate Binding Sites in Cytochrome P450 3A4: The Stoichiometry of the Enzyme-Substrate Complexes Probed by FRET and Job’s Titration / H. Fernando, J. R. Halpert, D. R. Davydov // Biochemistry. – 2006. – Vol. 45, N 13. – P. 4199–4209. doi.org/10.1021/bi052491b; Davydov, D. R. Allosteric transitions in cytochrome P450eryF explored with pressure-perturbation spectroscopy, lifetime FRET, and a novel fluorescent substrate, Fluorol-7GA / D. R. Davydov, N. Y. Davydova, J. R. Halpert // Biochemistry. – 2008. – Vol. 47, N 43. – P. 11348–11359. doi.org/10.1021/bi8011803; Peripheral ligand-binding site in cytochrome P450 3A4 located with fluorescence resonance energy transfer (FRET) / D. R. Davydov [et al.] // Journal of Biological Chemistry. – 2012. – Vol. 287, N 9. – P. 6797–6809. doi.org/10.1074/jbc. m111.325654; Isin, E. M. Multiple sequential steps involved in the binding of inhibitors to cytochrome P450 3A4 / E. M. Isin, F. P. Guengerich // Journal of Biological Chemistry. – 2007. – Vol. 282, N 9. – P. 6863–6874. doi.org/10.1074/jbc.m610346200; https://doklady.belnauka.by/jour/article/view/459; undefined

  15. 15
    Academic Journal
  16. 16
  17. 17
    Academic Journal
  18. 18
    Book

    المساهمون: M. Barile, P. Cocomazzi, L. Sorrentino, F. Cossu, A. Aliverti

    Relation: info:eu-repo/semantics/altIdentifier/isbn/9781071612859; info:eu-repo/semantics/altIdentifier/isbn/9781071612866; info:eu-repo/semantics/altIdentifier/pmid/33751435; info:eu-repo/semantics/altIdentifier/wos/WOS:000683492300012; ispartofbook:Flavins and Flavoproteins; volume:2280; firstpage:179; lastpage:187; numberofpages:9; serie:METHODS IN MOLECULAR BIOLOGY; alleditors:M. Barile; http://hdl.handle.net/2434/829089; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85103282714

  19. 19
    Academic Journal
  20. 20