-
1Academic Journal
المؤلفون: D.V. Mashtalyar, I.M. Imshinetskiy, V.V. Kashepa, K.V. Nadaraia, M.A. Piatkova, A.I. Pleshkova, K.A. Fomenko, A.Yu. Ustinov, S.L. Sinebryukhov, S.V. Gnedenkov
المصدر: Journal of Magnesium and Alloys, Vol 12, Iss 6, Pp 2360-2379 (2024)
مصطلحات موضوعية: Plasma electrolytic oxidation, Bioactive coatings, Tantalum pentoxide, Simulated body fluid (SBF), Apatite formation, Histology, Mining engineering. Metallurgy, TN1-997
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: Jin Nakamura, Lison Le Bris, Toshiki Miyazaki
المصدر: Journal of the Ceramic Society of Japan. 2024, 132(1):30
-
3Academic Journal
المؤلفون: Günay Bulutsuz, Asli
المصدر: Industrial Lubrication and Tribology, 2022, Vol. 74, Issue 5, pp. 542-549.
-
4Academic Journal
المؤلفون: Hayati, SB. Widia Rezaly Biharu
المصدر: Jurnal Kolaboratif Sains; Vol. 6 No. 9: SEPTEMBER 2023; 1149-1156 ; 2623-2022
مصطلحات موضوعية: Paduan Kobalt, Kromium, Metalurgi Serbuk, Implan Ortopedi, Korosi, Simulated Body Fluid (SBF)
وصف الملف: application/pdf
Relation: https://jurnal.unismuhpalu.ac.id/index.php/JKS/article/view/4006/3103; https://jurnal.unismuhpalu.ac.id/index.php/JKS/article/view/4006
-
5Academic Journal
المؤلفون: Maryam Molaei, Arash Fattah-Alhosseini, Meisam Nouri, Mosab Kaseem
المصدر: Metals; Volume 13; Issue 4; Pages: 821
مصطلحات موضوعية: TiO 2 nanoparticles, titanium, plasma electrolytic oxidation (PEO), wear, simulated body fluid (SBF)
وصف الملف: application/pdf
Relation: https://dx.doi.org/10.3390/met13040821
الاتاحة: https://doi.org/10.3390/met13040821
-
6Academic Journal
المؤلفون: V. K. Krut'ko, L. Yu. Maslova, O. N. Musskaya, T. V. Safronova, N. L. Budeiko, A. I. Kulak, В. К. Крутько, Л. Ю. Маслова, О. Н. Мусская, Т. В. Сафронова, Н. Л. Будейко, А. И. Кулак
المساهمون: The work was financially supported by the SPSR “Chemical processes, reagents and technologies, bioregulators and bioorganic chemistry” under assignment 2.1.04.7 “Functionalization of nanocomposite materials based on calcium phosphates under conditions of interaction with synthetic polymers and biopolymers”, 2021-2025., Работа выполнена при финансовой поддержке ГПНИ «Химические процессы, реагенты и технологии, биорегуляторы и биооргхимия» по заданию 2.1.04.7 «Функционализация нанокомпозиционных материалов на основе кальцийфосфатов в условиях взаимодействия с синтетическими полимерами и биополимерами», 2021-2025 гг.
المصدر: Proceedings of the National Academy of Sciences of Belarus, Chemical Series; Том 58, № 2 (2022); 158-168 ; Известия Национальной академии наук Беларуси. Серия химических наук; Том 58, № 2 (2022); 158-168 ; 2524-2342 ; 1561-8331 ; 10.29235/1561-8331-2022-58-2
مصطلحات موضوعية: биомиметический апатит, tricalcium phosphate, calcium pyrophosphate, hydroxyapatite, Simulated Body Fluid (SBF), biomimetic apatite, трикальцийфосфат, пирофосфат кальция, гидроксиапатит
وصف الملف: application/pdf
Relation: https://vestichem.belnauka.by/jour/article/view/718/661; Wang, J. Nano-Hydroxyapatite Coating Promotes Porous Calcium Phosphate Ceramic-Induced Osteogenesis Via BMP/Smad Signaling Pathway / J. Wang, M. Wang, F. Chen // International Journal of Nanomedicine. - 2019. - Vol. 14. -P. 7987-8000. https://doi.org/10.2147/IJN.S216182; Сафронова, Т. В. Неорганические материалы для регенеративной медицины / Т. В. Сафронова // Неорганические материалы. - 2021. - Т. 57, № 5. - С. 467-499. https://doi.org/10.31857/S0002337X21050067; Daculsi, G. 20 years of biphasic calcium phosphate bioceramics development and applications / G. Daculsi, S. Baroth, R. Z. LeGeros // Advances in bioceramics and porous ceramics II. - Wiley: American Ceramic Society, 2010. - Р. 45-58. https://doi.org/10.1002/9780470584354.ch5; Баринов, С. М. Подходы к созданию пористых материалов на основе фосфатов кальция, предназначенных для регенерации костной ткани / С. М. Баринов, В. С. Комлев // Неорганические материалы. - 2016. - Т. 52, № 4. - С. 383-391. https://doi.org/10.7868/S0002337X16040023; Doremus, R. H. Review: Bioceramics / R. H. Doremus // J. Mater. Sci. - 1992. - Vol. 27. - P. 285-297. https://doi.org/10.1007/bf00543915; Bioactive Calcium Phosphate-Based Composites for Bone Regeneration / M. Tavoni [et al.] // Journal of Composites Science. - 2021. - Vol. 5. - P. 227-254. https://doi.org/10.3390/jcs5090227; Баринов, С. М. Биокерамика на основе фосфатов кальция / С. М. Баринов, В. С. Комлев. - М.: Наука, 2005. -204 с.; Role of hydroxyapatite nanoparticle size in bone cell proliferation / Y. Cai [et al.] // Journal of Materials Chemistry. -2007. - Vol. 17, N 36. - P. 3780-3787. https://doi.org/10.1039/B705129H; Calcium phosphate ceramic foam obtained by firing a hydroxyapatite - monocalcium phosphate monohydrate powder mixture / V. K. Krut'ko [et al.] // Glass and ceramics. - 2022. - Vol. 78, N 11-12. - Р. 476-480. https://doi.org/10.1007/s10717-022-00435-y; Dorozhkin, S. V. Calcium orthophosphate bioceramics / S. V. Dorozhkin // Ceramics International. - 2015. - N 41. -P. 13913-13966. https://doi.org/10.1016/j.ceramint.2015.08.004; Крутько, В. К. Термические превращения в композиционных материалах на основе гидроксиапатита и диоксида циркония / В. К. Крутько, А. И. Кулак, О. Н. Мусская // Неорганические материалы. - 2017. - Т. 53, № 4. - С. 427-434. https://doi.org/10.7868/S0002337X17040091; Effect of CaF2 on densification and properties of hydroxyapatite-zirconia composites for biomedical applications / H.-W. Kim [et al.] // Biomaterials. - 2002. - Vol. 23. - P. 4113-4121. https://doi.org/10.1016/s0142-9612(02)00150-3; Calcium Phosphate Foams: Potential Scaffolds for Bone Tissue Modeling in Three Dimension / E. B. Montufar [et al.] // 3D Cell Culture. Methods and Protocols / ed. Z. Koledova. - New York: Humana Press, 2017. - P. 79-94. https://doi.org/10.1007/978-1-4939-7021-6_6; Bone marrow stromal cells and their use in regenerating bone / R. Cancedda [et al.] // Tissue Engineering of Cartilage and Bone: Novartis Foundation Symposium. - Chichester, UK: John Wiley & Sons, 2003. - Vol. 249. - P. 133-147. https://doi.org/10.1002/0470867973.ch10; Les allongements progressifs de l'avant-bras chez l'enfant. A propos d'une serie de 14 cas / F. Launay [et al.] // Revue de Chirurgie Orthopedique et Reparatrice de l'Appareil Moteur. - 2001. - Vol. 87. - P. 786-795. https://doi.org/RCO-12-2001-87-8-0035-1040-101019-ART5; Bioinspired approaches to toughen calcium phosphate-based ceramics for bone repair / P. Dee [et al.] // Journal of the Mechanical Behavior of Biomedical Materials. - 2020. - N 112. - Article ID 104078. https://doi.org/10.1016/j.jmbbm.2020.104078; Hench, L. L. Bioceramics / L. L. Hench // Journal of the American Ceramic Society. - 1998. - Vol. 81, N 7. - P. 1705-1728. https://doi.org/10.1111/j.1151-2916.1998.tb02540.x; Solutions able to reproduce in vivo surface-structure change in bioactive glass-ceramic A-W / T. Kokubo [et al.] // Journal of Biomedical Materials Research. - 1990. - N 24. - P. 721-734. https://doi.org/10.1002/jbm.820240607; Термическая эволюция кальцийфосфатной пенокерамики, полученной на основе гидроксиапатита и монокальцийфосфата моногидрата / В. К. Крутько [и др.] // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2019. - № 11. - С. 615-623. https://doi.org/10.26456/pcascnn/2019.11.615; Синтетический гидроксиапатит - основа костнозамещающих биоматериалов / В. К. Крутько [и др.] // София. -2017. - № 1. - С. 50-57.; Kokubo, T. How useful is SBF in predicting in vivo bone bioactivity? / T. Kokubo, H. Takadama // Biomaterials. -2006. - N 27. - P. 2907-2915. https://doi.org/10.1016/j.biomaterials.2006.01.017; Модифицирование кальцийфосфатной пенокерамики биоапатитом в среде SBF / В. К. Крутько [и др.] // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2021. - № 13. - С. 870-880. https://doi.org/10.26456/pcascnn/2021.13.870; Кальцийфосфатная пенокерамика с регулируемой биоактивностью / В. К. Крутько [и др.] // Физикохимические аспекты изучения кластеров, наноструктур и наноматериалов. - 2018. - № 10. - С. 374-382. https://doi.org/10.26456/pcascnn/2018.10.374; Clustering of calcium phosphate in SBF and in the system CaCl2-H3PO4-KCl-H2O / A. Oyane [et al.] // Bioceramics. -1999. - N 12. - P. 157-160. https://doi.org/10.1142/9789814291064_0038; Апатитные фосфаты кальция: жидкофазное формирование, термические превращения, терминология и идентификация / И. Е. Глазов [и др.] // Журнал неорганической химии. - 2022. - Т. 67, № 2. - С. 193-202. https://doi.org/10.31857/s0044457x22020040; Effect of platelet-poor plasma additive on the formation of biocompatible calcium phosphates / I. E. Glazov [et al.] // Materials Today Communications. - 2021. - Vol. 77. - P. 102224. https://doi.org/10.1016/j.mtcomm.2021.102224; Gernaey, K. V. 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering: Parts A, B and C / K. V. Gernaey, J. K. Huusom, R. Gani. - Elsevier, 2015. - P. 1571-1575.; P-Tricalcium phosphate interferes with the assessment of crystallinity in burned skeletal remains / G. Piga [et al.] // Journal of Spectroscopy. - 2018. - Article 5954146. https://doi.org/10.1155/2018/5954146; Кальцийфосфатная пенокерамика на основе порошковой смеси гидроксиапатит-брушит / В. К. Крутько [и др.] // Стекло и керамика. - 2019. - № 7. - С. 38-44.; An improvement in sintering property of P-tricalcium phosphate by addition of calcium pyrophosphate / Ryu H.-S. [et al.] // Biomaterials. - 2002. - Vol. 23. - P. 909-914. https://doi.org/10.1016/s0142-9612(01)00201-0.; Thermal analysis and high-temperature X-ray diffraction of nano-tricalcium phosphate crystallization / A. I. Bucur [et al.] // Journal of Thermal Analysis and Calorimetry. - 2012. - N 107. - Р. 249-255. https://doi.org/10.1007/s10973-011-1753-9; Matrix macromolecules in hard tissues control the nucleation and hierarchical assembly of hydroxyapatite / S. Gajjera-man [et al.] // Journal of Biological Chemistry. - 2007. - Vol. 282. - P. 1193-1204. https://doi.org/10.1074/jbc.M604732200; https://vestichem.belnauka.by/jour/article/view/718
-
7Academic Journal
المؤلفون: Fatemeh Salahshouri, Ehsan Saebnoori, Sina Borghei, Majid Mossahebi-Mohammadi, Hamid Reza Bakhsheshi-Rad, Filippo Berto
المصدر: Metals; Volume 12; Issue 11; Pages: 1866
مصطلحات موضوعية: titanium alloy, plasma electrolytic oxidation (PEO), bioactivity, simulated body fluid (SBF), corrosion behavior
وصف الملف: application/pdf
Relation: Metal Failure Analysis; https://dx.doi.org/10.3390/met12111866
الاتاحة: https://doi.org/10.3390/met12111866
-
8Academic Journal
المؤلفون: Mariangela Curcio, Brigida Bochicchio, Antonietta Pepe, Antonio Laezza, Adriana De Stefanis, Julietta V. Rau, Roberto Teghil, Angela De Bonis
المصدر: Coatings; Volume 12; Issue 10; Pages: 1427
مصطلحات موضوعية: polymeric fibrous scaffold, pulsed laser deposition, bioactive glass, thin films, bioactivity, simulated body fluid (SBF)
وصف الملف: application/pdf
Relation: Laser Coatings; https://dx.doi.org/10.3390/coatings12101427
-
9Dissertation/ Thesis
المؤلفون: Vallés Lluch, Ana
المساهمون: University/Department: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Thesis Advisors: Monleón Pradas, Manuel, Gallego Ferrer, Gloria
المصدر: Riunet
مصطلحات موضوعية: Nanocomposite, Hybrid, Hard tissue repair, Ethyl methacrylate, Hydroxyethyl acrylate, Tetraethyl orthosilicate, Silica, Sol-gel, Bioactive, Hydroxyapatite (hap), Simulated body fluid (sbf), Scaffold, Dentin, MAQUINAS Y MOTORES TERMICOS, 2206 10, 2211 02, 2301 15, 2304 12
URL الوصول: http://hdl.handle.net/10251/3795
-
10Dissertation/ Thesis
المساهمون: University/Department: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Thesis Advisors: Monleón Pradas, Manuel, Gallego Ferrer, Gloria
المصدر: Riunet
مصطلحات موضوعية: Nanocomposite, Hybrid, Hard tissue repair, Ethyl methacrylate, Hydroxyethyl acrylate, Tetraethyl orthosilicate, Silica, Sol-gel, Bioactive, Hydroxyapatite (hap), Simulated body fluid (sbf), Scaffold, Dentin, MAQUINAS Y MOTORES TERMICOS, 220610 - Polímeros, 221102 - Materiales compuestos, 230115 - Análisis de polímeros, 230412 - Polímeros reticulados
URL الوصول: http://hdl.handle.net/10251/3795
-
11Academic Journal
المساهمون: Kwon, Jae-Sung
مصطلحات موضوعية: Premixed-Mineral trioxide aggregate (MTA), Simulated body fluid (SBF), Saline, Distilled water (DW), Compressive strength, 기혼합형 Mineral trioxide aggregate (Premixed type of MTA)
Relation: Korean Journal of Dental Materials(대한치과재료학회지); J01999; OAK-2022-01150; https://ir.ymlib.yonsei.ac.kr/handle/22282913/188172; https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10959914; T202125729; Korean Journal of Dental Materials(대한치과재료학회지), Vol.48(4) : 281-292, 2021-12
-
12Academic Journal
المؤلفون: Nejatbakhsh, S., Anagri, Abdessakh, Valinataj Omran, A., Pulpytel, Jérôme, Bazin, Cyrille, Ullah, M., Mirshahi, M., Rezaie, H., Javadpour, J., Arefi-Khonsari, Farzaneh
المساهمون: Laboratoire Interfaces et Systèmes Electrochimiques (LISE), Institut de Chimie - CNRS Chimie (INC-CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Carcinose Angiogenèse et Recherche Translationnelle, Angiogenese et recherche translationnelle (CART U965), Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM), School of Metallurgy and Materials Engineering, Iran University of Science and Technology Tehran (IUST)
المصدر: ISSN: 0272-4324.
مصطلحات موضوعية: DBD (dielectrc barrier discharge), APPJ (atmospheric pressure plasma jet), Simulated body fluid (SBF), Hydroxyapatite (ha), Surface treatment UHMWPE (ultrahigh molecular weight polyethylene), [CHIM]Chemical Sciences, [CHIM.MATE]Chemical Sciences/Material chemistry, [SDV]Life Sciences [q-bio]
Relation: hal-03000662; https://hal.sorbonne-universite.fr/hal-03000662; https://hal.sorbonne-universite.fr/hal-03000662/document; https://hal.sorbonne-universite.fr/hal-03000662/file/Final%20Manuscript_.pdf
-
13Academic Journal
المؤلفون: Kamil Leksycki, Agnieszka Kaczmarek-Pawelska, Kamil Ochał, Andrzej Gradzik, Danil Yurievich Pimenov, Khaled Giasin, Daniel Chuchala, Szymon Wojciechowski
المصدر: Materials; Volume 14; Issue 22; Pages: 6917
مصطلحات موضوعية: Ti6Al4V alloy, finish turning, surface topography, cooling conditions, corrosion resistance, surface bioactivity, simulated body fluid (SBF), minimum quantity lubrication (MQL)
وصف الملف: application/pdf
Relation: Materials Simulation and Design; https://dx.doi.org/10.3390/ma14226917
الاتاحة: https://doi.org/10.3390/ma14226917
-
14
المؤلفون: Le Bris, Lison, 中村, 仁, Nakamura, Jin, Miyazaki, Toshiki, 宮崎, 敏樹
مصطلحات موضوعية: 3-Methacryloxypropyltrimethoxysilane (MPS), 2-Hydroxyethyl methacrylate (HEMA), Organic– inorganic hybrid, Simulated body fluid (SBF), Apatite, Tensile strength
وصف الملف: application/pdf
Relation: https://doi.org/10.2109/jcersj2.23164; Journal of the Ceramic Society of Japan; 132; 30; 33; https://kyutech.repo.nii.ac.jp/record/2000334/files/10.2109_jcersj2.23164.pdf
-
15Academic Journal
المؤلفون: Haiyang Wang, Toshinari Maeda, Toshiki Miyazaki
المصدر: Materials; Volume 13; Issue 21; Pages: 4998
مصطلحات موضوعية: polymethyl methacrylate (PMMA) bone cement, calcium acetate, apatite formation, bioactivity, simulated body fluid (SBF), setting time, compressive strength
وصف الملف: application/pdf
Relation: Biomaterials; https://dx.doi.org/10.3390/ma13214998
الاتاحة: https://doi.org/10.3390/ma13214998
-
16Academic Journal
المؤلفون: Oksana Klok, Anna Igual Munoz, Stefano Mischler
المصدر: Materials; Volume 13; Issue 21; Pages: 4858
مصطلحات موضوعية: biomaterials, metals, corrosion, electrochemistry, metal release, simulated body fluid (SBF)
وصف الملف: application/pdf
Relation: Biomaterials; https://dx.doi.org/10.3390/ma13214858
الاتاحة: https://doi.org/10.3390/ma13214858
-
17Academic Journal
المؤلفون: Hsing-Ning Yu, Hsueh-Chuan Hsu, Shih-Ching Wu, Cheng-Wei Hsu, Shih-Kuang Hsu, Wen-Fu Ho
المصدر: Coatings; Volume 10; Issue 2; Pages: 112
مصطلحات موضوعية: commercially pure titanium (c.p. Ti), hydroxyapatite, eggshell, hydrothermal reaction, nanoparticle, simulated body fluid (SBF)
وصف الملف: application/pdf
Relation: Bioactive Coatings and Biointerfaces; https://dx.doi.org/10.3390/coatings10020112
-
18Academic Journal
المؤلفون: Francesco Baino, Seiji Yamaguchi
المصدر: Biomimetics, Vol 5, Iss 57, p 57 (2020)
مصطلحات موضوعية: bioactivity, simulated body fluid (SBF), biomaterials, apatite, bioactive glass, titanium, Technology
Relation: https://www.mdpi.com/2313-7673/5/4/57; https://doaj.org/toc/2313-7673; https://doaj.org/article/423061ae851d4d94a7dc9fd870c08ab9
-
19
المؤلفون: Leonor, I. B., Kim, H-M, Balas, F., Kawashita, M., Reis, R. L., Kokubo, T., Nakamura, T.
المساهمون: Universidade do Minho
مصطلحات موضوعية: Polymer, Sulfonic groups (-SO3H), Surface modification, Apatite, Simulated body fluid (SBF), Bioactivity, Sulfonic groups (-SO h) 3, Science & Technology
وصف الملف: application/pdf
Relation: Leonor, I. B., Kim, H. M., Balas, F., Masakazu, K., Reis, R. L., Kokubo, T., & Nakamura, T. (2006, May 15). Formation of Bone-Like Apatite on Polymeric Surfaces Modified with -SO3H Groups. Materials Science Forum. Trans Tech Publications, Ltd. http://doi.org/10.4028/www.scientific.net/msf.514-516.966; 978-0-87849-402-6; 0255-5476
الاتاحة: https://hdl.handle.net/1822/18311
-
20Academic Journal
المؤلفون: İbrahim Aydın, Mustafa Kırman
المصدر: Metals; Volume 8; Issue 3; Pages: 151
مصطلحات موضوعية: aminoacetic acid-sodium aminoacetate, biomimetic coating, hydroxyapatite (HA), Ti6Al4V, simulated body fluid (SBF)
وصف الملف: application/pdf
Relation: https://dx.doi.org/10.3390/met8030151
الاتاحة: https://doi.org/10.3390/met8030151